These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 23881693)

  • 41. Study of cytotoxic effects of single-walled carbon nanotubes functionalized with different chemical groups on human MCF7 cells.
    Song M; Zeng L; Yuan S; Yin J; Wang H; Jiang G
    Chemosphere; 2013 Jul; 92(5):576-82. PubMed ID: 23648328
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanisms of nanotoxicity: generation of reactive oxygen species.
    Fu PP; Xia Q; Hwang HM; Ray PC; Yu H
    J Food Drug Anal; 2014 Mar; 22(1):64-75. PubMed ID: 24673904
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of humic acid and electrolytes on photocatalytic reactivity and transport of carbon nanoparticle aggregates in water.
    Chae SR; Xiao Y; Lin S; Noeiaghaei T; Kim JO; Wiesner MR
    Water Res; 2012 Sep; 46(13):4053-62. PubMed ID: 22673338
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanomaterial health effects--part 1: background and current knowledge.
    Powell MC; Kanarek MS
    WMJ; 2006 Mar; 105(2):16-20. PubMed ID: 16628969
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thickness of multiwalled carbon nanotubes affects their lung toxicity.
    Fenoglio I; Aldieri E; Gazzano E; Cesano F; Colonna M; Scarano D; Mazzucco G; Attanasio A; Yakoub Y; Lison D; Fubini B
    Chem Res Toxicol; 2012 Jan; 25(1):74-82. PubMed ID: 22128750
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Toxicological assessment of nanomaterials: the role of in vitro Raman microspectroscopic analysis.
    Efeoglu E; Maher MA; Casey A; Byrne HJ
    Anal Bioanal Chem; 2018 Feb; 410(6):1631-1646. PubMed ID: 29264675
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The primacy of physicochemical characterization of nanomaterials for reliable toxicity assessment: a review of the zebrafish nanotoxicology model.
    Bohnsack JP; Assemi S; Miller JD; Furgeson DY
    Methods Mol Biol; 2012; 926():261-316. PubMed ID: 22975971
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intracellular generation of reactive oxygen species by mitochondria.
    Nohl H; Gille L; Staniek K
    Biochem Pharmacol; 2005 Mar; 69(5):719-23. PubMed ID: 15710349
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optical imaging of intracellular reactive oxygen species for the assessment of the cytotoxicity of nanoparticles.
    Lee K; Lee H; Lee KW; Park TG
    Biomaterials; 2011 Apr; 32(10):2556-65. PubMed ID: 21247630
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanotoxicity: the growing need for in vivo study.
    Fischer HC; Chan WC
    Curr Opin Biotechnol; 2007 Dec; 18(6):565-71. PubMed ID: 18160274
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Barakol-induced apoptosis in P19 cells through generation of reactive oxygen species and activation of caspase-9.
    Wongtongtair S; Chanvorachote P; Hutamekalin P; Chaichantipyuth C; Lipipun V; Tiensiwakul P; Meksuriyen D
    J Ethnopharmacol; 2011 Sep; 137(2):971-8. PubMed ID: 21777666
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ecotoxicity and analysis of nanomaterials in the aquatic environment.
    Farré M; Gajda-Schrantz K; Kantiani L; Barceló D
    Anal Bioanal Chem; 2009 Jan; 393(1):81-95. PubMed ID: 18987850
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanotoxicology: the molecular science point of view.
    Pumera M
    Chem Asian J; 2011 Feb; 6(2):340-8. PubMed ID: 20725923
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of chemical composition and state of the surface on the toxic response to high aspect ratio nanomaterials.
    Fubini B; Fenoglio I; Tomatis M; Turci F
    Nanomedicine (Lond); 2011 Jul; 6(5):899-920. PubMed ID: 21793679
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electron spin resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species.
    He W; Liu Y; Wamer WG; Yin JJ
    J Food Drug Anal; 2014 Mar; 22(1):49-63. PubMed ID: 24673903
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assessing regulated cell death modalities as an efficient tool for
    Tkachenko A; Onishchenko A; Myasoedov V; Yefimova S; Havranek O
    Nanotoxicology; 2023 Apr; 17(3):218-248. PubMed ID: 37083543
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Assessment of decellularized porcine diaphragm conjugated with gold nanomaterials as a tissue scaffold for wound healing.
    Cozad MJ; Bachman SL; Grant SA
    J Biomed Mater Res A; 2011 Dec; 99(3):426-34. PubMed ID: 21887737
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [ROS induction and structural modification in human lymphocyte membrane under the influence of carbon nanotubes].
    Zhornik EV; Baranova LA; Strukova AM; Loĭko EN; Volotovskiĭ ID
    Biofizika; 2012; 57(3):446-53. PubMed ID: 22873068
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles.
    Bhattacharya K; Naha PC; Naydenova I; Mintova S; Byrne HJ
    Toxicol Lett; 2012 Dec; 215(3):151-60. PubMed ID: 23103338
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material.
    Fruijtier-Pölloth C
    Toxicology; 2012 Apr; 294(2-3):61-79. PubMed ID: 22349641
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.