BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23881757)

  • 21. Impact of microprocessor prosthetic knee on mobility and quality of life in patients with lower limb amputation: a systematic review of the literature.
    Thibaut A; Beaudart C; Maertens DE Noordhout B; Geers S; Kaux JF; Pelzer D
    Eur J Phys Rehabil Med; 2022 Jun; 58(3):452-461. PubMed ID: 35148043
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Can microprocessor knees reduce the disparity in trips and falls risks between above and below knee prosthesis users?
    McGrath M; Gray LA; Rek B; Davies KC; Savage Z; McLean J; Stenson A; Zahedi S
    PLoS One; 2022; 17(9):e0271315. PubMed ID: 36054087
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees.
    Kaufman KR; Levine JA; Brey RH; Iverson BK; McCrady SK; Padgett DJ; Joyner MJ
    Gait Posture; 2007 Oct; 26(4):489-93. PubMed ID: 17869114
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cost-effectiveness of microprocessor-controlled prosthetic knees.
    Dillon M; Ratcliffe J
    Arch Phys Med Rehabil; 2010 Apr; 91(4):663; author reply 664. PubMed ID: 20382304
    [No Abstract]   [Full Text] [Related]  

  • 25. A pilot study comparing the cognitive demand of walking for transfemoral amputees using the Intelligent Prosthesis with that using conventionally damped knees.
    Heller BW; Datta D; Howitt J
    Clin Rehabil; 2000 Oct; 14(5):518-22. PubMed ID: 11043877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of lower limb prosthesis on activity, participation, and quality of life: a systematic review.
    Samuelsson KA; Töytäri O; Salminen AL; Brandt A
    Prosthet Orthot Int; 2012 Jun; 36(2):145-58. PubMed ID: 22307861
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Safety, energy efficiency, and cost efficacy of the C-Leg for transfemoral amputees: A review of the literature.
    Highsmith MJ; Kahle JT; Bongiorni DR; Sutton BS; Groer S; Kaufman KR
    Prosthet Orthot Int; 2010 Dec; 34(4):362-77. PubMed ID: 20969495
    [TBL] [Abstract][Full Text] [Related]  

  • 28. First results concerning the safety, walking, and satisfaction with an innovative, microprocessor-controlled four-axes prosthetic foot.
    Hahn A; Sreckovic I; Reiter S; Mileusnic M
    Prosthet Orthot Int; 2018 Jun; 42(3):350-356. PubMed ID: 29400252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measures and procedures utilized to determine the added value of microprocessor-controlled prosthetic knee joints: a systematic review.
    Theeven PJ; Hemmen B; Brink PR; Smeets RJ; Seelen HA
    BMC Musculoskelet Disord; 2013 Nov; 14():333. PubMed ID: 24279314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Comparison of Control Strategies in Commercial and Research Knee Prostheses.
    Fluit R; Prinsen EC; Wang S; van der Kooij H
    IEEE Trans Biomed Eng; 2020 Jan; 67(1):277-290. PubMed ID: 31021749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Re: Gait and balance of transfemoral amputees using passive mechanical and microprocessor controlled prosthetic knees by Kaufman et al. [Gait and Posture 20 (2007) 489-493].
    Dillon M; Bach T
    Gait Posture; 2009 Jan; 29(1):161-2; author reply 163-4. PubMed ID: 18722125
    [No Abstract]   [Full Text] [Related]  

  • 32. Functional added value of microprocessor-controlled knee joints in daily life performance of Medicare Functional Classification Level-2 amputees.
    Theeven P; Hemmen B; Rings F; Meys G; Brink P; Smeets R; Seelen H
    J Rehabil Med; 2011 Oct; 43(10):906-15. PubMed ID: 21947182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Developing prescribing guidelines for microprocessor-controlled prosthetic knees in the South East England.
    Sedki I; Fisher K
    Prosthet Orthot Int; 2015 Jun; 39(3):250-4. PubMed ID: 24669001
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performance of conventional and X2® prosthetic knees during slope descent.
    Bell EM; Pruziner AL; Wilken JM; Wolf EJ
    Clin Biomech (Bristol, Avon); 2016 Mar; 33():26-31. PubMed ID: 26921583
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of a user-adaptive prosthetic knee on planned gait termination.
    Prinsen EC; Nederhand MJ; Koopman BF; Rietman JS
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1254-1259. PubMed ID: 28813993
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinematic and kinetic comparisons of transfemoral amputee gait using C-Leg and Mauch SNS prosthetic knees.
    Segal AD; Orendurff MS; Klute GK; McDowell ML; Pecoraro JA; Shofer J; Czerniecki JM
    J Rehabil Res Dev; 2006; 43(7):857-70. PubMed ID: 17436172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Designs and performance of three new microprocessor-controlled knee joints.
    Thiele J; Schöllig C; Bellmann M; Kraft M
    Biomed Tech (Berl); 2019 Feb; 64(1):119-126. PubMed ID: 29425102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of microprocessor-controlled prosthetic knees on self-reported mobility, quality of life, and psychological states in patients with transfemoral amputations.
    Şen Eİ; Aydın T; Buğdaycı D; Kesiktaş FN
    Acta Orthop Traumatol Turc; 2020 Sep; 54(5):502-506. PubMed ID: 33155559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Biomechanics and evaluation of the microprocessor-controlled C-Leg exoprosthesis knee joint].
    Stinus H
    Z Orthop Ihre Grenzgeb; 2000; 138(3):278-82. PubMed ID: 10929622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transfemoral amputees.
    Burnfield JM; Eberly VJ; Gronely JK; Perry J; Yule WJ; Mulroy SJ
    Prosthet Orthot Int; 2012 Mar; 36(1):95-104. PubMed ID: 22223685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.