BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23881777)

  • 1. Enhanced stability of (111)-surface-dominant core-shell nanoparticle catalysts towards the oxygen reduction reaction.
    Wu J; Shi M; Yin X; Yang H
    ChemSusChem; 2013 Oct; 6(10):1888-92. PubMed ID: 23881777
    [No Abstract]   [Full Text] [Related]  

  • 2. Morphology and lateral strain control of Pt nanoparticles via core-shell construction using alloy AgPd core toward oxygen reduction reaction.
    Yang J; Yang J; Ying JY
    ACS Nano; 2012 Nov; 6(11):9373-82. PubMed ID: 23061786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Octahedral Pd@Pt1.8Ni core-shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction.
    Zhao X; Chen S; Fang Z; Ding J; Sang W; Wang Y; Zhao J; Peng Z; Zeng J
    J Am Chem Soc; 2015 Mar; 137(8):2804-7. PubMed ID: 25675212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermetallics as novel supports for Pt monolayer O2 reduction electrocatalysts: potential for significantly improving properties.
    Ghosh T; Vukmirovic MB; DiSalvo FJ; Adzic RR
    J Am Chem Soc; 2010 Jan; 132(3):906-7. PubMed ID: 20039609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrocatalysis: theory and experiment at the interface.
    Russell AE
    Phys Chem Chem Phys; 2008 Jul; 10(25):3607-8. PubMed ID: 18563220
    [No Abstract]   [Full Text] [Related]  

  • 7. Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis.
    Strasser P; Koh S; Greeley J
    Phys Chem Chem Phys; 2008 Jul; 10(25):3670-83. PubMed ID: 18563228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dealloying shows the way to new catalysts.
    Hutchings GJ
    ChemSusChem; 2010 Apr; 3(4):429-30. PubMed ID: 20301181
    [No Abstract]   [Full Text] [Related]  

  • 9. Synthesis of highly active and stable Au-PtCu core-shell nanoparticles for oxygen reduction reaction.
    Hsu C; Huang C; Hao Y; Liu F
    Phys Chem Chem Phys; 2012 Nov; 14(42):14696-701. PubMed ID: 23032948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PtSn intermetallic, core-shell, and alloy nanoparticles as CO-tolerant electrocatalysts for H2 oxidation.
    Liu Z; Jackson GS; Eichhorn BW
    Angew Chem Int Ed Engl; 2010 Apr; 49(18):3173-6. PubMed ID: 20340144
    [No Abstract]   [Full Text] [Related]  

  • 11. Relating structural aspects of bimetallic Pt(3)Cr(1)/C nanoparticles to their electrocatalytic activity, stability, and selectivity in the oxygen reduction reaction.
    Taufany F; Pan CJ; Chou HL; Rick J; Chen YS; Liu DG; Lee JF; Tang MT; Hwang BJ
    Chemistry; 2011 Sep; 17(38):10724-35. PubMed ID: 21837730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction.
    Kim J; Lee Y; Sun S
    J Am Chem Soc; 2010 Apr; 132(14):4996-7. PubMed ID: 20297818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of component distribution and nanoporosity in CuPt nanotubes on electrocatalysis of the oxygen reduction reaction.
    Guo H; Liu X; Bai C; Chen Y; Wang L; Zheng M; Dong Q; Peng DL
    ChemSusChem; 2015 Feb; 8(3):486-94. PubMed ID: 25505002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction.
    Hernandez-Fernandez P; Masini F; McCarthy DN; Strebel CE; Friebel D; Deiana D; Malacrida P; Nierhoff A; Bodin A; Wise AM; Nielsen JH; Hansen TW; Nilsson A; Stephens IE; Chorkendorff I
    Nat Chem; 2014 Aug; 6(8):732-8. PubMed ID: 25054945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrocatalytic activity of bimetallic platinum-gold catalysts fabricated based on nanoporous gold.
    Zhang J; Ma H; Zhang D; Liu P; Tian F; Ding Y
    Phys Chem Chem Phys; 2008 Jun; 10(22):3250-5. PubMed ID: 18500402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between platinum nanoparticle surface rearrangement induced by heat treatment and activity for an oxygen reduction reaction.
    Chung DY; Chung YH; Jung N; Choi KH; Sung YE
    Phys Chem Chem Phys; 2013 Aug; 15(32):13658-63. PubMed ID: 23835855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorial screening of PtTiMe ternary alloys for oxygen electroreduction.
    He T; Kreidler E
    Phys Chem Chem Phys; 2008 Jul; 10(25):3731-8. PubMed ID: 18563234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing core-shell nanoparticle catalysts with a genetic algorithm.
    Froemming NS; Henkelman G
    J Chem Phys; 2009 Dec; 131(23):234103. PubMed ID: 20025310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical oxygen reduction behavior of selectively deposited platinum atoms on gold nanoparticles.
    Sarkar A; Kerr JB; Cairns EJ
    Chemphyschem; 2013 Jul; 14(10):2132-42. PubMed ID: 23505224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulating the oxygen reduction activity of platinum shells with shape-controlled palladium nanocrystal cores.
    Shao M; He G; Peles A; Odell JH; Zeng J; Su D; Tao J; Yu T; Zhu Y; Xia Y
    Chem Commun (Camb); 2013 Oct; 49(79):9030-2. PubMed ID: 23982335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.