BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 23881782)

  • 1. Phytohormone supplementation significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production.
    Park WK; Yoo G; Moon M; Kim CW; Choi YE; Yang JW
    Appl Biochem Biotechnol; 2013 Nov; 171(5):1128-42. PubMed ID: 23881782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of lipid production and fatty acid profiling in Chlamydomonas reinhardtii, CC1010 for biodiesel production.
    Karpagam R; Preeti R; Ashokkumar B; Varalakshmi P
    Ecotoxicol Environ Saf; 2015 Nov; 121():253-7. PubMed ID: 25838071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixotrophic cultivation of microalgae for biodiesel production: status and prospects.
    Wang J; Yang H; Wang F
    Appl Biochem Biotechnol; 2014 Apr; 172(7):3307-29. PubMed ID: 24532442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review.
    Chen CY; Yeh KL; Aisyah R; Lee DJ; Chang JS
    Bioresour Technol; 2011 Jan; 102(1):71-81. PubMed ID: 20674344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels.
    Markou G; Angelidaki I; Georgakakis D
    Appl Microbiol Biotechnol; 2012 Nov; 96(3):631-45. PubMed ID: 22996277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promotion of microalgal growth by co-culturing with Cellvibrio pealriver using xylan as feedstock.
    Xie Z; Lin W; Luo J
    Bioresour Technol; 2016 Jan; 200():1050-4. PubMed ID: 26508433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microalgal lipids biochemistry and biotechnological perspectives.
    Bellou S; Baeshen MN; Elazzazy AM; Aggeli D; Sayegh F; Aggelis G
    Biotechnol Adv; 2014 Dec; 32(8):1476-93. PubMed ID: 25449285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytohormones in microalgae: a new opportunity for microalgal biotechnology?
    Lu Y; Xu J
    Trends Plant Sci; 2015 May; 20(5):273-282. PubMed ID: 25697753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel one-stage cultivation/fermentation strategy for improved biogas production with microalgal biomass.
    Klassen V; Blifernez-Klassen O; Hoekzema Y; Mussgnug JH; Kruse O
    J Biotechnol; 2015 Dec; 215():44-51. PubMed ID: 26022425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening, growth medium optimisation and heterotrophic cultivation of microalgae for biodiesel production.
    Jia Z; Liu Y; Daroch M; Geng S; Cheng JJ
    Appl Biochem Biotechnol; 2014 Aug; 173(7):1667-79. PubMed ID: 24845038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production.
    Yan D; Lu Y; Chen YF; Wu Q
    Bioresour Technol; 2011 Jun; 102(11):6487-93. PubMed ID: 21474303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct lipid extraction from wet Chlamydomonas reinhardtii biomass using osmotic shock.
    Yoo G; Park WK; Kim CW; Choi YE; Yang JW
    Bioresour Technol; 2012 Nov; 123():717-22. PubMed ID: 22939599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of growth phase on harvesting characteristics, autoflocculation and lipid content of Ettlia texensis for microalgal biodiesel production.
    Salim S; Shi Z; Vermuë MH; Wijffels RH
    Bioresour Technol; 2013 Jun; 138():214-21. PubMed ID: 23612182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of microalgae growth and fatty acid content under the influence of phytohormones.
    Salama ES; Kabra AN; Ji MK; Kim JR; Min B; Jeon BH
    Bioresour Technol; 2014 Nov; 172():97-103. PubMed ID: 25247249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid extraction methods from microalgal biomass harvested by two different paths: screening studies toward biodiesel production.
    Ríos SD; Castañeda J; Torras C; Farriol X; Salvadó J
    Bioresour Technol; 2013 Apr; 133():378-88. PubMed ID: 23434816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods of downstream processing for the production of biodiesel from microalgae.
    Kim J; Yoo G; Lee H; Lim J; Kim K; Kim CW; Park MS; Yang JW
    Biotechnol Adv; 2013 Nov; 31(6):862-76. PubMed ID: 23632376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production.
    Kong QX; Li L; Martinez B; Chen P; Ruan R
    Appl Biochem Biotechnol; 2010 Jan; 160(1):9-18. PubMed ID: 19507059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.
    Yeh KL; Chang JS
    Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris: increased production of biomass and FAMEs.
    Park WK; Moon M; Kwak MS; Jeon S; Choi GG; Yang JW; Lee B
    Bioresour Technol; 2014 Nov; 171():343-9. PubMed ID: 25218207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The utilization of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions.
    Mutanda T; Karthikeyan S; Bux F
    Appl Biochem Biotechnol; 2011 Aug; 164(7):1126-38. PubMed ID: 21347654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.