BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 23881821)

  • 1. High CO2-capture ability of a porous organic polymer bifunctionalized with carboxy and triazole groups.
    Xie LH; Suh MP
    Chemistry; 2013 Aug; 19(35):11590-7. PubMed ID: 23881821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Surface Phenolic-OH Groups in N-Rich Porous Organic Polymers for Enhancing the CO
    Das SK; Bhanja P; Kundu SK; Mondal S; Bhaumik A
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23813-23824. PubMed ID: 29956910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly stable CO2/N2 and CO2/CH4 selectivity in hyper-cross-linked heterocyclic porous polymers.
    Saleh M; Lee HM; Kemp KC; Kim KS
    ACS Appl Mater Interfaces; 2014 May; 6(10):7325-33. PubMed ID: 24793559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of interpenetration and gas-sorption properties of metal-organic frameworks by a simple change in ligand design.
    Prasad TK; Suh MP
    Chemistry; 2012 Jul; 18(28):8673-80. PubMed ID: 22678955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of gas sorption properties of neutral and anionic metal-organic frameworks prepared from the same building blocks but in different solvent systems.
    Choi MH; Park HJ; Hong DH; Suh MP
    Chemistry; 2013 Dec; 19(51):17432-8. PubMed ID: 24318268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective Approach for Increasing the Heteroatom Doping Levels of Porous Carbons for Superior CO
    Abdelmoaty YH; Tessema TD; Norouzi N; El-Kadri OM; Turner JBM; El-Kaderi HM
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35802-35810. PubMed ID: 28956436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and gas adsorption properties of tetra-armed microporous organic polymer networks based on triphenylamine.
    Yang X; Yao S; Yu M; Jiang JX
    Macromol Rapid Commun; 2014 Apr; 35(8):834-9. PubMed ID: 24504693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ observation of gating phenomena in the flexible porous coordination polymer Zn2(BPnDC)2(bpy) (SNU-9) in a combined diffraction and gas adsorption experiment.
    Bon V; Senkovska I; Wallacher D; Többens DM; Zizak I; Feyerherm R; Mueller U; Kaskel S
    Inorg Chem; 2014 Feb; 53(3):1513-20. PubMed ID: 24437349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroquinone and Quinone-Grafted Porous Carbons for Highly Selective CO2 Capture from Flue Gases and Natural Gas Upgrading.
    Wang J; Krishna R; Yang J; Deng S
    Environ Sci Technol; 2015 Aug; 49(15):9364-73. PubMed ID: 26114815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microporous MOF with a polar pore surface exhibiting excellent selective adsorption of CO
    Pal A; Chand S; Elahi SM; Das MC
    Dalton Trans; 2017 Nov; 46(44):15280-15286. PubMed ID: 29068020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture.
    Jalilov AS; Ruan G; Hwang CC; Schipper DE; Tour JJ; Li Y; Fei H; Samuel EL; Tour JM
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1376-82. PubMed ID: 25531980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of functional thienyl-phosphine microporous polymers for carbon dioxide capture.
    Chen X; Qiao S; Du Z; Zhou Y; Yang R
    Macromol Rapid Commun; 2013 Jul; 34(14):1181-5. PubMed ID: 23757097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly porous metal-organic framework: structural transformations of a guest-free MOF depending on activation method and temperature.
    Park HJ; Lim DW; Yang WS; Oh TR; Suh MP
    Chemistry; 2011 Jun; 17(26):7251-60. PubMed ID: 21560171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of a polyhedral metal-organic framework via a flexible octacarboxylate ligand for gas adsorption and separation.
    Lin ZJ; Huang YB; Liu TF; Li XY; Cao R
    Inorg Chem; 2013 Mar; 52(6):3127-32. PubMed ID: 23469758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directing the structural features of N(2)-phobic nanoporous covalent organic polymers for CO(2) capture and separation.
    Patel HA; Je SH; Park J; Jung Y; Coskun A; Yavuz CT
    Chemistry; 2014 Jan; 20(3):772-80. PubMed ID: 24338860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen-containing microporous conjugated polymers via carbazole-based oxidative coupling polymerization: preparation, porosity, and gas uptake.
    Chen Q; Liu DP; Luo M; Feng LJ; Zhao YC; Han BH
    Small; 2014 Jan; 10(2):308-15. PubMed ID: 23913850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expanded organic building units for the construction of highly porous metal-organic frameworks.
    Kong GQ; Han ZD; He Y; Ou S; Zhou W; Yildirim T; Krishna R; Zou C; Chen B; Wu CD
    Chemistry; 2013 Oct; 19(44):14886-94. PubMed ID: 24115143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Synthesis of a Pentiptycene-Based Highly Microporous Organic Polymer for Gas Storage and Water Treatment.
    Luo S; Zhang Q; Zhang Y; Weaver KP; Phillip WA; Guo R
    ACS Appl Mater Interfaces; 2018 May; 10(17):15174-15182. PubMed ID: 29658699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of Ester- and Amide-Linker-Based Porous Organic Polymers for Carbon Dioxide Capture and Separation at Wide Temperatures and Pressures.
    Ullah R; Atilhan M; Anaya B; Al-Muhtaseb S; Aparicio S; Patel H; Thirion D; Yavuz CT
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20772-85. PubMed ID: 27458732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting mixed-gas adsorption equilibria on activated carbon for precombustion CO2 capture.
    García S; Pis JJ; Rubiera F; Pevida C
    Langmuir; 2013 May; 29(20):6042-52. PubMed ID: 23617579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.