BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 23881843)

  • 1. Contribution of water molecules in the spontaneous release of protein by graphene sheets.
    Liang LJ; Wang Q; Wu T; Sun TY; Kang Y
    Chemphyschem; 2013 Sep; 14(13):2902-9. PubMed ID: 23881843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dispersion of graphene sheets in aqueous solution by oligodeoxynucleotides.
    Liang LJ; Wu T; Kang Y; Wang Q
    Chemphyschem; 2013 Jun; 14(8):1626-32. PubMed ID: 23554343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.
    Qin W; Li X; Bian WW; Fan XJ; Qi JY
    Biomaterials; 2010 Feb; 31(5):1007-16. PubMed ID: 19880174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydration patterns of graphene-based nanomaterials (GBNMs) play a major role in the stability of a helical protein: a molecular dynamics simulation study.
    Baweja L; Balamurugan K; Subramanian V; Dhawan A
    Langmuir; 2013 Nov; 29(46):14230-8. PubMed ID: 24144078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets.
    Li H; Zeng XC
    ACS Nano; 2012 Mar; 6(3):2401-9. PubMed ID: 22356158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet.
    Rana MK; Chandra A
    J Chem Phys; 2013 May; 138(20):204702. PubMed ID: 23742495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene confinement effects on melting/freezing point and structure and dynamics behavior of water.
    Foroutan M; Fatemi SM; Shokouh F
    J Mol Graph Model; 2016 May; 66():85-90. PubMed ID: 27041448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computation of the binding free energy of peptides to graphene in explicit water.
    Welch CM; Camden AN; Barr SA; Leuty GM; Kedziora GS; Berry RJ
    J Chem Phys; 2015 Jul; 143(4):045104. PubMed ID: 26233167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localized in situ polymerization on graphene surfaces for stabilized graphene dispersions.
    Das S; Wajid AS; Shelburne JL; Liao YC; Green MJ
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1844-51. PubMed ID: 21539387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What is the contact angle of water on graphene?
    Taherian F; Marcon V; van der Vegt NF; Leroy F
    Langmuir; 2013 Feb; 29(5):1457-65. PubMed ID: 23320893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A green chemistry of graphene: photochemical reduction towards monolayer graphene sheets and the role of water adlayers.
    Li XH; Chen JS; Wang X; Schuster ME; Schlögl R; Antonietti M
    ChemSusChem; 2012 Apr; 5(4):642-6. PubMed ID: 22415902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarizability effects in molecular dynamics simulations of the graphene-water interface.
    Ho TA; Striolo A
    J Chem Phys; 2013 Feb; 138(5):054117. PubMed ID: 23406108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interlayer water regulates the bio-nano interface of a β-sheet protein stacking on graphene.
    Lv W; Xu G; Zhang H; Li X; Liu S; Niu H; Xu D; Wu R
    Sci Rep; 2015 Jan; 5():7572. PubMed ID: 25557857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the stabilization of liquid-phase-exfoliated graphene in polar solvents: molecular dynamics simulations and kinetic theory of colloid aggregation.
    Shih CJ; Lin S; Strano MS; Blankschtein D
    J Am Chem Soc; 2010 Oct; 132(41):14638-48. PubMed ID: 20879739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphitization behaviour of chemically derived graphene sheets.
    Long D; Li W; Qiao W; Miyawaki J; Yoon SH; Mochida I; Ling L
    Nanoscale; 2011 Sep; 3(9):3652-6. PubMed ID: 21805004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly conducting graphene sheets and Langmuir-Blodgett films.
    Li X; Zhang G; Bai X; Sun X; Wang X; Wang E; Dai H
    Nat Nanotechnol; 2008 Sep; 3(9):538-42. PubMed ID: 18772914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave-assisted synthesis of highly water-soluble graphene towards electrical DNA sensor.
    Choi BG; Park H; Yang MH; Jung YM; Lee SY; Hong WH; Park TJ
    Nanoscale; 2010 Dec; 2(12):2692-7. PubMed ID: 20976351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulations of peptide-graphene interactions in explicit water.
    Camden AN; Barr SA; Berry RJ
    J Phys Chem B; 2013 Sep; 117(37):10691-7. PubMed ID: 23964693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors controlling the size of graphene oxide sheets produced via the graphite oxide route.
    Pan S; Aksay IA
    ACS Nano; 2011 May; 5(5):4073-83. PubMed ID: 21469697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling.
    Wu L; Liu L; Gao B; Muñoz-Carpena R; Zhang M; Chen H; Zhou Z; Wang H
    Langmuir; 2013 Dec; 29(49):15174-81. PubMed ID: 24261814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.