BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 23881913)

  • 1. Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6.
    Tao R; Xiong X; DePinho RA; Deng CX; Dong XC
    J Lipid Res; 2013 Oct; 54(10):2745-53. PubMed ID: 23881913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FoxO3 transcription factor and Sirt6 deacetylase regulate low density lipoprotein (LDL)-cholesterol homeostasis via control of the proprotein convertase subtilisin/kexin type 9 (Pcsk9) gene expression.
    Tao R; Xiong X; DePinho RA; Deng CX; Dong XC
    J Biol Chem; 2013 Oct; 288(41):29252-9. PubMed ID: 23974119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FoxO3 regulates hepatic triglyceride metabolism via modulation of the expression of sterol regulatory-element binding protein 1c.
    Wang L; Zhu X; Sun X; Yang X; Chang X; Xia M; Lu Y; Xia P; Yan H; Bian H; Gao X
    Lipids Health Dis; 2019 Nov; 18(1):197. PubMed ID: 31729980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone deacetylase SIRT6 regulates chemosensitivity in liver cancer cells via modulation of FOXO3 activity.
    Hu JQ; Deng F; Hu XP; Zhang W; Zeng XC; Tian XF
    Oncol Rep; 2018 Dec; 40(6):3635-3644. PubMed ID: 30542728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP.
    Walker AK; Yang F; Jiang K; Ji JY; Watts JL; Purushotham A; Boss O; Hirsch ML; Ribich S; Smith JJ; Israelian K; Westphal CH; Rodgers JT; Shioda T; Elson SL; Mulligan P; Najafi-Shoushtari H; Black JC; Thakur JK; Kadyk LC; Whetstine JR; Mostoslavsky R; Puigserver P; Li X; Dyson NJ; Hart AC; Näär AM
    Genes Dev; 2010 Jul; 24(13):1403-17. PubMed ID: 20595232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluvastatin activates sirtuin 6 to regulate sterol regulatory element-binding proteins and AMP-activated protein kinase in HepG2 cells.
    Kim JH; Lee JM; Kim JH; Kim KR
    Biochem Biophys Res Commun; 2018 Sep; 503(3):1415-1421. PubMed ID: 30078674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sirtuin 6-A Key Regulator of Hepatic Lipid Metabolism and Liver Health.
    Dong XC
    Cells; 2023 Feb; 12(4):. PubMed ID: 36831330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endothelial SIRT6 Is Vital to Prevent Hypertension and Associated Cardiorenal Injury Through Targeting Nkx3.2-GATA5 Signaling.
    Guo J; Wang Z; Wu J; Liu M; Li M; Sun Y; Huang W; Li Y; Zhang Y; Tang W; Li X; Zhang C; Hong F; Li N; Nie J; Yi F
    Circ Res; 2019 May; 124(10):1448-1461. PubMed ID: 30894089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FoxO4 interacts with the sterol regulatory factor SREBP2 and the hypoxia inducible factor HIF2α at the CYP51 promoter.
    Zhu J; Jiang X; Chehab FF
    J Lipid Res; 2014 Mar; 55(3):431-42. PubMed ID: 24353279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct activation of forkhead box O3 by tumor suppressors p53 and p73 is disrupted during liver regeneration in mice.
    Kurinna S; Stratton SA; Tsai WW; Akdemir KC; Gu W; Singh P; Goode T; Darlington GJ; Barton MC
    Hepatology; 2010 Sep; 52(3):1023-32. PubMed ID: 20564353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long noncoding RNA lncARSR promotes hepatic cholesterol biosynthesis via modulating Akt/SREBP-2/HMGCR pathway.
    Huang J; Chen S; Cai D; Bian D; Wang F
    Life Sci; 2018 Jun; 203():48-53. PubMed ID: 29678744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased gene expression of liver SREBP-2 in experimental chronic renal failure.
    Chmielewski M; Sucajtys-Szulc E; Kossowska E; Swierczynski J; Rutkowski B; Boguslawski W
    Atherosclerosis; 2007 Apr; 191(2):326-32. PubMed ID: 16814791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sterol-responsive element-binding protein (SREBP) 2 down-regulates ATP-binding cassette transporter A1 in vascular endothelial cells: a novel role of SREBP in regulating cholesterol metabolism.
    Zeng L; Liao H; Liu Y; Lee TS; Zhu M; Wang X; Stemerman MB; Zhu Y; Shyy JY
    J Biol Chem; 2004 Nov; 279(47):48801-7. PubMed ID: 15358760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects.
    Yu J; Wu Y; Yang P
    J Neurochem; 2016 May; 137(3):371-83. PubMed ID: 26896748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SREBP2 Activation Induces Hepatic Long-chain Acyl-CoA Synthetase 1 (ACSL1) Expression in Vivo and in Vitro through a Sterol Regulatory Element (SRE) Motif of the ACSL1 C-promoter.
    Singh AB; Kan CF; Dong B; Liu J
    J Biol Chem; 2016 Mar; 291(10):5373-84. PubMed ID: 26728456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SIRT6 deacetylates H3K18ac at pericentric chromatin to prevent mitotic errors and cellular senescence.
    Tasselli L; Xi Y; Zheng W; Tennen RI; Odrowaz Z; Simeoni F; Li W; Chua KF
    Nat Struct Mol Biol; 2016 May; 23(5):434-40. PubMed ID: 27043296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insulin secretion impairment in Sirt6 knockout pancreatic β cells is mediated by suppression of the FoxO1-Pdx1-Glut2 pathway.
    Song MY; Wang J; Ka SO; Bae EJ; Park BH
    Sci Rep; 2016 Jul; 6():30321. PubMed ID: 27457971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The epigenetic regulator SIRT6 protects the liver from alcohol-induced tissue injury by reducing oxidative stress in mice.
    Kim HG; Huang M; Xin Y; Zhang Y; Zhang X; Wang G; Liu S; Wan J; Ahmadi AR; Sun Z; Liangpunsakul S; Xiong X; Dong XC
    J Hepatol; 2019 Nov; 71(5):960-969. PubMed ID: 31295533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hepatic suppression of Foxo1 and Foxo3 causes hypoglycemia and hyperlipidemia in mice.
    Zhang K; Li L; Qi Y; Zhu X; Gan B; DePinho RA; Averitt T; Guo S
    Endocrinology; 2012 Feb; 153(2):631-46. PubMed ID: 22147007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis.
    Kim HS; Xiao C; Wang RH; Lahusen T; Xu X; Vassilopoulos A; Vazquez-Ortiz G; Jeong WI; Park O; Ki SH; Gao B; Deng CX
    Cell Metab; 2010 Sep; 12(3):224-36. PubMed ID: 20816089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.