BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 23882084)

  • 1. Cost of rNTP/dNTP pool imbalance at the replication fork.
    Yao NY; Schroeder JW; Yurieva O; Simmons LA; O'Donnell ME
    Proc Natl Acad Sci U S A; 2013 Aug; 110(32):12942-7. PubMed ID: 23882084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutagenic cost of ribonucleotides in bacterial DNA.
    Schroeder JW; Randall JR; Hirst WG; O'Donnell ME; Simmons LA
    Proc Natl Acad Sci U S A; 2017 Oct; 114(44):11733-11738. PubMed ID: 29078353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the mechanisms of ribonucleotide excision repair in Escherichia coli.
    Vaisman A; McDonald JP; Noll S; Huston D; Loeb G; Goodman MF; Woodgate R
    Mutat Res; 2014 Mar; 761():21-33. PubMed ID: 24495324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential Activities of DNA Polymerases in Processing Ribonucleotides during DNA Synthesis in Archaea.
    Lemor M; Kong Z; Henry E; Brizard R; Laurent S; Bossé A; Henneke G
    J Mol Biol; 2018 Dec; 430(24):4908-4924. PubMed ID: 30342933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms employed by Escherichia coli to prevent ribonucleotide incorporation into genomic DNA by Pol V.
    McDonald JP; Vaisman A; Kuban W; Goodman MF; Woodgate R
    PLoS Genet; 2012; 8(11):e1003030. PubMed ID: 23144626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High density of unrepaired genomic ribonucleotides leads to Topoisomerase 1-mediated severe growth defects in absence of ribonucleotide reductase.
    Cerritelli SM; Iranzo J; Sharma S; Chabes A; Crouch RJ; Tollervey D; El Hage A
    Nucleic Acids Res; 2020 May; 48(8):4274-4297. PubMed ID: 32187369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unlike the
    Malfatti MC; Henneke G; Balachander S; Koh KD; Newnam G; Uehara R; Crouch RJ; Storici F; Tell G
    J Biol Chem; 2019 Aug; 294(35):13061-13072. PubMed ID: 31300556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pre-steady state kinetic analysis of HIV-1 reverse transcriptase for non-canonical ribonucleoside triphosphate incorporation and DNA synthesis from ribonucleoside-containing DNA template.
    Nguyen LA; Domaoal RA; Kennedy EM; Kim DH; Schinazi RF; Kim B
    Antiviral Res; 2015 Mar; 115():75-82. PubMed ID: 25557601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ribonucleoside triphosphates promote T7 DNA replication and the lysis of T7-Infected Escherichia coli.
    Zou Z; Xu W; Mi C; Xu Y; Du K; Li B; Ye Y; Ling Y; Zhang H
    Biochimie; 2019 Dec; 167():25-33. PubMed ID: 31493471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of misincorporated ribonucleotides from prokaryotic genomes: an unexpected role for nucleotide excision repair.
    Vaisman A; McDonald JP; Huston D; Kuban W; Liu L; Van Houten B; Woodgate R
    PLoS Genet; 2013 Nov; 9(11):e1003878. PubMed ID: 24244177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases.
    Nick McElhinny SA; Watts BE; Kumar D; Watt DL; Lundström EB; Burgers PM; Johansson E; Chabes A; Kunkel TA
    Proc Natl Acad Sci U S A; 2010 Mar; 107(11):4949-54. PubMed ID: 20194773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mismatch repair-independent tandem repeat sequence instability resulting from ribonucleotide incorporation by DNA polymerase ε.
    Clark AB; Lujan SA; Kissling GE; Kunkel TA
    DNA Repair (Amst); 2011 May; 10(5):476-82. PubMed ID: 21414850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribonucleotides are signals for mismatch repair of leading-strand replication errors.
    Lujan SA; Williams JS; Clausen AR; Clark AB; Kunkel TA
    Mol Cell; 2013 May; 50(3):437-43. PubMed ID: 23603118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viral protein X reduces the incorporation of mutagenic noncanonical rNTPs during lentivirus reverse transcription in macrophages.
    Oo A; Kim DH; Schinazi RF; Kim B
    J Biol Chem; 2020 Jan; 295(2):657-666. PubMed ID: 31806704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribonucleotide incorporation by yeast DNA polymerase ζ.
    Makarova AV; Nick McElhinny SA; Watts BE; Kunkel TA; Burgers PM
    DNA Repair (Amst); 2014 Jun; 18():63-7. PubMed ID: 24674899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strand specificity of ribonucleotide excision repair in Escherichia coli.
    Łazowski K; Faraz M; Vaisman A; Ashton NW; Jonczyk P; Fijalkowska IJ; Clausen AR; Woodgate R; Makiela-Dzbenska K
    Nucleic Acids Res; 2023 Feb; 51(4):1766-1782. PubMed ID: 36762476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequent incorporation of ribonucleotides during HIV-1 reverse transcription and their attenuated repair in macrophages.
    Kennedy EM; Amie SM; Bambara RA; Kim B
    J Biol Chem; 2012 Apr; 287(17):14280-8. PubMed ID: 22383524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ribonucleotides embedded in a DNA template on HIV-1 reverse transcription kinetics and fidelity.
    Daddacha W; Noble E; Nguyen LA; Kennedy EM; Kim B
    J Biol Chem; 2013 May; 288(18):12522-32. PubMed ID: 23479739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribonucleotides as nucleotide excision repair substrates.
    Cai Y; Geacintov NE; Broyde S
    DNA Repair (Amst); 2014 Jan; 13():55-60. PubMed ID: 24290807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNases H1 and H2: guardians of the stability of the nuclear genome when supply of dNTPs is limiting for DNA synthesis.
    Cerritelli SM; El Hage A
    Curr Genet; 2020 Dec; 66(6):1073-1084. PubMed ID: 32886170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.