These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 23882186)

  • 1. Inhibitory synaptic plasticity: spike timing-dependence and putative network function.
    Vogels TP; Froemke RC; Doyon N; Gilson M; Haas JS; Liu R; Maffei A; Miller P; Wierenga CJ; Woodin MA; Zenke F; Sprekeler H
    Front Neural Circuits; 2013; 7():119. PubMed ID: 23882186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory Plasticity: Balance, Control, and Codependence.
    Hennequin G; Agnes EJ; Vogels TP
    Annu Rev Neurosci; 2017 Jul; 40():557-579. PubMed ID: 28598717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spike timing dependent plasticity promotes synchrony of inhibitory networks in the presence of heterogeneity.
    Talathi SS; Hwang DU; Ditto WL
    J Comput Neurosci; 2008 Oct; 25(2):262-81. PubMed ID: 18297384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct Heterosynaptic Plasticity in Fast Spiking and Non-Fast-Spiking Inhibitory Neurons in Rat Visual Cortex.
    Chistiakova M; Ilin V; Roshchin M; Bannon N; Malyshev A; Kisvárday Z; Volgushev M
    J Neurosci; 2019 Aug; 39(35):6865-6878. PubMed ID: 31300522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity-dependent modification of inhibitory synapses in models of rhythmic neural networks.
    Soto-Treviño C; Thoroughman KA; Marder E; Abbott LF
    Nat Neurosci; 2001 Mar; 4(3):297-303. PubMed ID: 11224547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterosynaptic Plasticity Determines the Set Point for Cortical Excitatory-Inhibitory Balance.
    Field RE; D'amour JA; Tremblay R; Miehl C; Rudy B; Gjorgjieva J; Froemke RC
    Neuron; 2020 Jun; 106(5):842-854.e4. PubMed ID: 32213321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural Firing Patterns Imply Low Sensitivity of Synaptic Plasticity to Spike Timing Compared with Firing Rate.
    Graupner M; Wallisch P; Ostojic S
    J Neurosci; 2016 Nov; 36(44):11238-11258. PubMed ID: 27807166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks V: self-organization schemes and weight dependence.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2010 Nov; 103(5):365-86. PubMed ID: 20882297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models.
    Thickbroom GW
    Exp Brain Res; 2007 Jul; 180(4):583-93. PubMed ID: 17562028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus.
    Saraga F; Balena T; Wolansky T; Dickson CT; Woodin MA
    Neuroscience; 2008 Jul; 155(1):64-75. PubMed ID: 18562122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic dynamics and long-term plasticity at synapses of Purkinje cells onto neighboring Purkinje cells of a mormyrid fish: a dual cell recording study.
    Zhang Y; Magnus G; Han VZ
    Neuroscience; 2012 Dec; 225():199-212. PubMed ID: 22906478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability and Competition in Multi-spike Models of Spike-Timing Dependent Plasticity.
    Babadi B; Abbott LF
    PLoS Comput Biol; 2016 Mar; 12(3):e1004750. PubMed ID: 26939080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spike timing dependent synaptic plasticity in biological systems.
    Roberts PD; Bell CC
    Biol Cybern; 2002 Dec; 87(5-6):392-403. PubMed ID: 12461629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of complex spike timing-dependent plasticity in cerebellar learning.
    Roberts PD
    J Comput Neurosci; 2007 Jun; 22(3):283-96. PubMed ID: 17203402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A neural circuit model forming semantic network with exception using spike-timing-dependent plasticity of inhibitory synapses.
    Murakoshi K; Suganuma K
    Biosystems; 2007; 90(3):903-10. PubMed ID: 17643738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning in realistic networks of spiking neurons and spike-driven plastic synapses.
    Mongillo G; Curti E; Romani S; Amit DJ
    Eur J Neurosci; 2005 Jun; 21(11):3143-60. PubMed ID: 15978023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oscillation-Driven Spike-Timing Dependent Plasticity Allows Multiple Overlapping Pattern Recognition in Inhibitory Interneuron Networks.
    Garrido JA; Luque NR; Tolu S; D'Angelo E
    Int J Neural Syst; 2016 Aug; 26(5):1650020. PubMed ID: 27079422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of substance P and 5-HT induced synaptic plasticity in the lamprey spinal CPG: consequences for network pattern generation.
    Kozlov A; Kotaleski JH; Aurell E; Grillner S; Lansner A
    J Comput Neurosci; 2001; 11(2):183-200. PubMed ID: 11717534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spike timing-dependent plasticity of neural circuits.
    Dan Y; Poo MM
    Neuron; 2004 Sep; 44(1):23-30. PubMed ID: 15450157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of inhibitory spike-timing-dependent plasticity on fast sparsely synchronized rhythms in a small-world neuronal network.
    Kim SY; Lim W
    Neural Netw; 2018 Oct; 106():50-66. PubMed ID: 30025272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.