These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23882213)

  • 1. Rapid, parallel path planning by propagating wavefronts of spiking neural activity.
    Ponulak F; Hopfield JJ
    Front Comput Neurosci; 2013; 7():98. PubMed ID: 23882213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain inspired path planning algorithms for drones.
    Chao Y; Augenstein P; Roennau A; Dillmann R; Xiong Z
    Front Neurorobot; 2023; 17():1111861. PubMed ID: 36937552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmarking Highly Parallel Hardware for Spiking Neural Networks in Robotics.
    Steffen L; Koch R; Ulbrich S; Nitzsche S; Roennau A; Dillmann R
    Front Neurosci; 2021; 15():667011. PubMed ID: 34267622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks.
    Walter F; Röhrbein F; Knoll A
    Neural Netw; 2015 Dec; 72():152-67. PubMed ID: 26422422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recurrent Spiking Networks Solve Planning Tasks.
    Rueckert E; Kappel D; Tanneberg D; Pecevski D; Peters J
    Sci Rep; 2016 Feb; 6():21142. PubMed ID: 26888174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks.
    Wang RM; Hamilton TJ; Tapson JC; van Schaik A
    Front Neurosci; 2015; 9():180. PubMed ID: 26041985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refinement and Pattern Formation in Neural Circuits by the Interaction of Traveling Waves with Spike-Timing Dependent Plasticity.
    Bennett JE; Bair W
    PLoS Comput Biol; 2015 Aug; 11(8):e1004422. PubMed ID: 26308406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mimicking Biological Synaptic Functionality with an Indium Phosphide Synaptic Device on Silicon for Scalable Neuromorphic Computing.
    Sarkar D; Tao J; Wang W; Lin Q; Yeung M; Ren C; Kapadia R
    ACS Nano; 2018 Feb; 12(2):1656-1663. PubMed ID: 29328623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural Coding in Spiking Neural Networks: A Comparative Study for Robust Neuromorphic Systems.
    Guo W; Fouda ME; Eltawil AM; Salama KN
    Front Neurosci; 2021; 15():638474. PubMed ID: 33746705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of Spike-Timing-Dependent Plasticity in Spiking Neural Systems with Noise.
    Nobukawa S; Nishimura H
    Int J Neural Syst; 2016 Aug; 26(5):1550040. PubMed ID: 26678248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time sensory-motor integration of hippocampal place cell replay and prefrontal sequence learning in simulated and physical rat robots for novel path optimization.
    Cazin N; Scleidorovich P; Weitzenfeld A; Dominey PF
    Biol Cybern; 2020 Apr; 114(2):249-268. PubMed ID: 32095878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-Time Classification of Complex Patterns Using Spike-Based Learning in Neuromorphic VLSI.
    Mitra S; Fusi S; Indiveri G
    IEEE Trans Biomed Circuits Syst; 2009 Feb; 3(1):32-42. PubMed ID: 23853161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Neurocomputational Model of Goal-Directed Navigation in Insect-Inspired Artificial Agents.
    Goldschmidt D; Manoonpong P; Dasgupta S
    Front Neurorobot; 2017; 11():20. PubMed ID: 28446872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits.
    Prezioso M; Mahmoodi MR; Bayat FM; Nili H; Kim H; Vincent A; Strukov DB
    Nat Commun; 2018 Dec; 9(1):5311. PubMed ID: 30552327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicon synaptic transistor for hardware-based spiking neural network and neuromorphic system.
    Kim H; Hwang S; Park J; Park BG
    Nanotechnology; 2017 Oct; 28(40):405202. PubMed ID: 28820141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-organization of synchronous activity propagation in neuronal networks driven by local excitation.
    Bayati M; Valizadeh A; Abbassian A; Cheng S
    Front Comput Neurosci; 2015; 9():69. PubMed ID: 26089794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An unsupervised neuromorphic clustering algorithm.
    Diamond A; Schmuker M; Nowotny T
    Biol Cybern; 2019 Aug; 113(4):423-437. PubMed ID: 30944983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-Scale Simulations of Plastic Neural Networks on Neuromorphic Hardware.
    Knight JC; Tully PJ; Kaplan BA; Lansner A; Furber SB
    Front Neuroanat; 2016; 10():37. PubMed ID: 27092061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.