These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23882213)

  • 21. An unsupervised neuromorphic clustering algorithm.
    Diamond A; Schmuker M; Nowotny T
    Biol Cybern; 2019 Aug; 113(4):423-437. PubMed ID: 30944983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large-Scale Simulations of Plastic Neural Networks on Neuromorphic Hardware.
    Knight JC; Tully PJ; Kaplan BA; Lansner A; Furber SB
    Front Neuroanat; 2016; 10():37. PubMed ID: 27092061
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toward Robust Cognitive 3D Brain-Inspired Cross-Paradigm System.
    Ben Abdallah A; Dang KN
    Front Neurosci; 2021; 15():690208. PubMed ID: 34248491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spike-timing dependent plasticity and the cognitive map.
    Bush D; Philippides A; Husbands P; O'Shea M
    Front Comput Neurosci; 2010; 4():142. PubMed ID: 21060719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A biologically plausible supervised learning method for spiking neural networks using the symmetric STDP rule.
    Hao Y; Huang X; Dong M; Xu B
    Neural Netw; 2020 Jan; 121():387-395. PubMed ID: 31593843
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On Practical Issues for Stochastic STDP Hardware With 1-bit Synaptic Weights.
    Yousefzadeh A; Stromatias E; Soto M; Serrano-Gotarredona T; Linares-Barranco B
    Front Neurosci; 2018; 12():665. PubMed ID: 30374283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SpiLinC: Spiking Liquid-Ensemble Computing for Unsupervised Speech and Image Recognition.
    Srinivasan G; Panda P; Roy K
    Front Neurosci; 2018; 12():524. PubMed ID: 30190670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The hippocampus as a cognitive graph.
    Muller RU; Stead M; Pach J
    J Gen Physiol; 1996 Jun; 107(6):663-94. PubMed ID: 8783070
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System.
    Milde MB; Blum H; Dietmüller A; Sumislawska D; Conradt J; Indiveri G; Sandamirskaya Y
    Front Neurorobot; 2017; 11():28. PubMed ID: 28747883
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Compensating Inhomogeneities of Neuromorphic VLSI Devices Via Short-Term Synaptic Plasticity.
    Bill J; Schuch K; Brüderle D; Schemmel J; Maass W; Meier K
    Front Comput Neurosci; 2010; 4():129. PubMed ID: 21031027
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probabilistic Spike Propagation for Efficient Hardware Implementation of Spiking Neural Networks.
    Nallathambi A; Sen S; Raghunathan A; Chandrachoodan N
    Front Neurosci; 2021; 15():694402. PubMed ID: 34335168
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spiking Neural Networks Based on OxRAM Synapses for Real-Time Unsupervised Spike Sorting.
    Werner T; Vianello E; Bichler O; Garbin D; Cattaert D; Yvert B; De Salvo B; Perniola L
    Front Neurosci; 2016; 10():474. PubMed ID: 27857680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems.
    Osswald M; Ieng SH; Benosman R; Indiveri G
    Sci Rep; 2017 Jan; 7():40703. PubMed ID: 28079187
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solving Constraint Satisfaction Problems with Networks of Spiking Neurons.
    Jonke Z; Habenschuss S; Maass W
    Front Neurosci; 2016; 10():118. PubMed ID: 27065785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient Spike-Driven Learning With Dendritic Event-Based Processing.
    Yang S; Gao T; Wang J; Deng B; Lansdell B; Linares-Barranco B
    Front Neurosci; 2021; 15():601109. PubMed ID: 33679295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neurodynamics of mental exploration.
    Hopfield JJ
    Proc Natl Acad Sci U S A; 2010 Jan; 107(4):1648-53. PubMed ID: 20080534
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation and regulation of dynamic patterns in two-dimensional spiking neural circuits with spike-timing-dependent plasticity.
    Palmer JH; Gong P
    Neural Comput; 2013 Nov; 25(11):2833-57. PubMed ID: 24001345
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Emerging neuromorphic devices.
    Ielmini D; Ambrogio S
    Nanotechnology; 2020 Feb; 31(9):092001. PubMed ID: 31698347
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vervet monkeys use paths consistent with context-specific spatial movement heuristics.
    Teichroeb JA
    Ecol Evol; 2015 Oct; 5(20):4706-16. PubMed ID: 26668734
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards a Bio-Inspired Real-Time Neuromorphic Cerebellum.
    Bogdan PA; Marcinnò B; Casellato C; Casali S; Rowley AGD; Hopkins M; Leporati F; D'Angelo E; Rhodes O
    Front Cell Neurosci; 2021; 15():622870. PubMed ID: 34135732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.