These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 23882218)

  • 1. The irradiated tumor microenvironment: role of tumor-associated macrophages in vascular recovery.
    Russell JS; Brown JM
    Front Physiol; 2013; 4():157. PubMed ID: 23882218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibiting vasculogenesis after radiation: a new paradigm to improve local control by radiotherapy.
    Martin BJ
    Semin Radiat Oncol; 2013 Oct; 23(4):281-7. PubMed ID: 24012342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiation Potentiates Monocyte Infiltration into Tumors by Ninjurin1 Expression in Endothelial Cells.
    Kang JH; Woo JK; Jang YS; Oh SH
    Cells; 2020 Apr; 9(5):. PubMed ID: 32353975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of vasculogenesis, but not angiogenesis, prevents the recurrence of glioblastoma after irradiation in mice.
    Kioi M; Vogel H; Schultz G; Hoffman RM; Harsh GR; Brown JM
    J Clin Invest; 2010 Mar; 120(3):694-705. PubMed ID: 20179352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents: exploring mechanisms of interaction.
    Wachsberger P; Burd R; Dicker AP
    Clin Cancer Res; 2003 Jun; 9(6):1957-71. PubMed ID: 12796357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macrophage exclusion after radiation therapy (MERT): A new and effective way to increase the therapeutic ratio of radiotherapy.
    Brown JM; Thomas R; Nagpal S; Recht L
    Radiother Oncol; 2020 Mar; 144():159-164. PubMed ID: 31812931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of vessel-targeting agents and fractionated radiation therapy: the role of the SDF-1/CXCR4 pathway.
    Chen FH; Fu SY; Yang YC; Wang CC; Chiang CS; Hong JH
    Int J Radiat Oncol Biol Phys; 2013 Jul; 86(4):777-84. PubMed ID: 23601898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vasculatures in tumors growing from preirradiated tissues: formed by vasculogenesis and resistant to radiation and antiangiogenic therapy.
    Chen FH; Chiang CS; Wang CC; Fu SY; Tsai CS; Jung SM; Wen CJ; Lee CC; Hong JH
    Int J Radiat Oncol Biol Phys; 2011 Aug; 80(5):1512-21. PubMed ID: 21621344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiation Damage to Tumor Vasculature Initiates a Program That Promotes Tumor Recurrences.
    Brown JM
    Int J Radiat Oncol Biol Phys; 2020 Nov; 108(3):734-744. PubMed ID: 32473180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regarding: Rosenthal DI, Glatstein E. "We've Got a Treatment, but What's the Disease?" The Oncologist 1996;1.
    Lunsford LD; Flickinger JC; Larson D
    Oncologist; 1997; 2(1):59-61. PubMed ID: 10388030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CSC Radioresistance: A Therapeutic Challenge to Improve Radiotherapy Effectiveness in Cancer.
    Olivares-Urbano MA; Griñán-Lisón C; Marchal JA; Núñez MI
    Cells; 2020 Jul; 9(7):. PubMed ID: 32660072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation-induced immune responses: mechanisms and therapeutic perspectives.
    Jeong H; Bok S; Hong BJ; Choi HS; Ahn GO
    Blood Res; 2016 Sep; 51(3):157-163. PubMed ID: 27722125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells.
    Ahn GO; Brown JM
    Cancer Cell; 2008 Mar; 13(3):193-205. PubMed ID: 18328424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination antiangiogenic therapy and radiation in head and neck cancers.
    Hsu HW; Wall NR; Hsueh CT; Kim S; Ferris RL; Chen CS; Mirshahidi S
    Oral Oncol; 2014 Jan; 50(1):19-26. PubMed ID: 24269532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone marrow-derived, alternatively activated macrophages enhance solid tumor growth and lung metastasis of mammary carcinoma cells in a Balb/C mouse orthotopic model.
    Cho HJ; Jung JI; Lim DY; Kwon GT; Her S; Park JH; Park JH
    Breast Cancer Res; 2012 May; 14(3):R81. PubMed ID: 22616919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor Microenvironment as A "Game Changer" in Cancer Radiotherapy.
    Jarosz-Biej M; Smolarczyk R; Cichoń T; Kułach N
    Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31261963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of bone marrow-derived cells in angiogenesis: focus on macrophages and pericytes.
    Ding Y; Song N; Luo Y
    Cancer Microenviron; 2012 Dec; 5(3):225-36. PubMed ID: 22528877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monocytes and dendritic cells in a hypoxic environment: Spotlights on chemotaxis and migration.
    Bosco MC; Puppo M; Blengio F; Fraone T; Cappello P; Giovarelli M; Varesio L
    Immunobiology; 2008; 213(9-10):733-49. PubMed ID: 18926289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiation-induced inflammatory cascade and its reverberating crosstalks as potential cause of post-radiotherapy second malignancies.
    Gandhi S; Chandna S
    Cancer Metastasis Rev; 2017 Jun; 36(2):375-393. PubMed ID: 28707199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and potential roles of bone marrow-derived stromal cells in cancer development and metastasis.
    Kawai H; Tsujigiwa H; Siar CH; Nakano K; Takabatake K; Fujii M; Hamada M; Tamamura R; Nagatsuka H
    Int J Med Sci; 2018; 15(12):1406-1414. PubMed ID: 30275769
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.