These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 2388274)

  • 1. A polarized photobleaching study of chromatin reorientation in intact nuclei.
    Selvin PR; Scalettar BA; Langmore JP; Axelrod D; Klein MP; Hearst JE
    J Mol Biol; 1990 Aug; 214(4):911-22. PubMed ID: 2388274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible in vitro packing of nucleosomal filaments into globular supranucleosomal units in chromatin of whole chick erythrocyte nuclei.
    Zentgraf H; Müller U; Franke WW
    Eur J Cell Biol; 1980 Dec; 23(1):171-88. PubMed ID: 7460964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural transitions of chromatin in isolated Xenopus erythrocyte nuclei. I. The effects of ions.
    Chegini N; Gregory SP; Hilder VA; Pocklington MJ; Maclean N
    J Submicrosc Cytol; 1981 Jul; 13(3):291-308. PubMed ID: 7334537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyelectrolyte counterion condensation theory explains differential scanning calorimetry studies of salt-induced condensation of chicken erythrocyte chromatin.
    Labarbe R; Flock S; Maus C; Houssier C
    Biochemistry; 1996 Mar; 35(10):3319-27. PubMed ID: 8605169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rotational dynamics of colloidal spheres probed with fluorescence recovery after photobleaching.
    Lettinga MP; Koenderink GH; Kuipers BW; Bessels E; Philipse AP
    J Chem Phys; 2004 Mar; 120(9):4517-29. PubMed ID: 15268620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The study of chromatin and chromosome structure on preparations of interphase nucleus derivatives resulting from nuclear wall removal. IV. Structural heterogeneity of stretched chromatin in membrane-free cell nuclei from human peripheral lymphocytes].
    Demin SIu; Stefanova BN
    Tsitologiia; 2000; 42(5):486-501. PubMed ID: 10890055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-resolved microscopy of chromatin in vitro and in vivo.
    Davis SK; Bardeen CJ
    Photochem Photobiol; 2005; 81(3):548-55. PubMed ID: 15581387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Study of structural changes in chromatin in the presence of mono- and divalent cations by means of flow linear dichroism].
    Makarov VL; Dimitrov SI
    Mol Biol (Mosk); 1982; 16(5):1086-96. PubMed ID: 7144752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supranucleosomal organization of sea urchin sperm chromatin in regularly arranged 40 to 50 nm large granular subunits.
    Zentgraf H; Müller U; Franke WW
    Eur J Cell Biol; 1980 Feb; 20(3):254-64. PubMed ID: 7358056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of UV-irradiation of rat liver nuclei on structural transitions and fractionation of the chromatin.
    Prusov AN; Kolomijtseva GYa
    Biochemistry (Mosc); 1997 Jun; 62(6):667-75. PubMed ID: 9284549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Ions and chromatin structure--morphologic and x-ray microanalytic findings].
    Ziervogel H; von Zglinicki T
    Acta Histochem Suppl; 1990; 39():477-8. PubMed ID: 2080289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated electron microscope tomography of frozen-hydrated chromatin: the irregular three-dimensional zigzag architecture persists in compact, isolated fibers.
    Horowitz RA; Koster AJ; Walz J; Woodcock CL
    J Struct Biol; 1997 Dec; 120(3):353-62. PubMed ID: 9441938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length.
    Williams SP; Athey BD; Muglia LJ; Schappe RS; Gough AH; Langmore JP
    Biophys J; 1986 Jan; 49(1):233-48. PubMed ID: 3955173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Condensation of chromatin in situ by cation-dependent charge shielding and aggregation.
    Engelhardt M
    Biochem Biophys Res Commun; 2004 Nov; 324(4):1210-4. PubMed ID: 15504343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural transitions of chromatin in isolated Xenopus erythrocyte nuclei. II. Computer-based image analysis.
    Chegini N; Hilder VA; Gregory SP; Maclean N
    J Submicrosc Cytol; 1981 Jul; 13(3):309-19. PubMed ID: 7334538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salt-dependent structural changes of chromatin in isolated chicken liver nuclei as visualized by scanning electron microscopy.
    Arai S; Hayashi M; Nakanishi YH
    J Electron Microsc (Tokyo); 1995 Aug; 44(4):191-7. PubMed ID: 8568443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin substructure: an electron microscopic study of thin-sectioned chromatin subjected to sequential protein extraction and water swelling procedures.
    Cameron IL; Pavlat WA; Jeter JR
    Anat Rec; 1979 Aug; 194(4):547-62. PubMed ID: 475016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic milieu and volume adjustments in detergent-extracted thymic nuclei.
    Kellermayer M; Rouse D; Györkey F; Hazlewood CF
    Physiol Chem Phys Med NMR; 1983; 15(4):345-54. PubMed ID: 6608742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron probe x-ray microanalysis studies on the ionic environment of nuclei and the maintenance of chromatin structure.
    Cameron IL
    Prog Clin Biol Res; 1985; 196():223-39. PubMed ID: 3878526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A fluorescence photobleaching study of the microsecond reorientational motions of DNA.
    Scalettar BA; Selvin PR; Axelrod D; Hearst JE; Klein MP
    Biophys J; 1988 Feb; 53(2):215-26. PubMed ID: 2964258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.