These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23882776)

  • 1. C-LFP-multi-walled carbon nanotubes composite cathode materials synthesized by solid-state reaction for lithium ion batteries.
    Hwang YH; Prabakar SJ; Pyo M
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5440-4. PubMed ID: 23882776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Synthesis of SiO
    Zhao Y; Liu Z; Zhang Y; Mentbayeva A; Wang X; Maximov MY; Liu B; Bakenov Z; Yin F
    Nanoscale Res Lett; 2017 Dec; 12(1):459. PubMed ID: 28724265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of a carbon supported lithium iron phosphate nanocomposite cathode material from metal-organic framework for lithium-ion batteries.
    Yu L; Zeng H; Jia R; Zhang R; Xu B
    J Colloid Interface Sci; 2024 Oct; 672():564-573. PubMed ID: 38852357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prominent enhancement of stability under high current density of LiFePO
    Kim J; Song S; Lee CS; Lee M; Bae J
    J Colloid Interface Sci; 2023 Nov; 650(Pt B):1958-1965. PubMed ID: 37517195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries.
    Wang B; Xu B; Liu T; Liu P; Guo C; Wang S; Wang Q; Xiong Z; Wang D; Zhao XS
    Nanoscale; 2014 Jan; 6(2):986-95. PubMed ID: 24287590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Ternary Polyaniline/Active Carbon/Lithium Iron Phosphate Composite as Cathode Material for Lithium Ion Battery.
    Wang X; Zhang W; Huang Y; Xia T; Lian Y
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6494-7. PubMed ID: 27427742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of sulfur and multi-walled carbon nanotube composite synthesized by dissolution and precipitation for Li/S batteries.
    Park JS; Kim DJ; Park JW; Ryu HS; Kim KW; Wang GX; Ahn HJ
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5794-8. PubMed ID: 22966656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology-controlled synthesis of self-assembled LiFePO4/C/RGO for high-performance Li-ion batteries.
    Lin M; Chen Y; Chen B; Wu X; Kam K; Lu W; Chan HL; Yuan J
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17556-63. PubMed ID: 25233480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant-Mediated and Morphology-Controlled Nanostructured LiFePO
    Khan S; Raj RP; George L; Kannangara GSK; Milev A; Varadaraju UV; Selvam P
    ChemistryOpen; 2020 Jan; 9(1):23-31. PubMed ID: 31921542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of nanoparticles-deposited double-walled TiO₂-B nanotubes with enhanced performance for lithium-ion batteries.
    Qu J; Cloud JE; Yang Y; Ding J; Yuan N
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22199-208. PubMed ID: 25419639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Deposition of the LiFePO
    Tolganbek N; Zhalgas N; Kadyrov Y; Umirov N; Bakenov Z; Mentbayeva A
    ACS Omega; 2023 Feb; 8(8):8045-8051. PubMed ID: 36872969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerium oxide dispersed multi walled carbon nanotubes as cathode material for flexible field emitters.
    Baby TT; Rakhi RB; Ravi N; Ramaprabhu S
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6718-23. PubMed ID: 22962812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LiFePO₄-Graphene Composites as High-Performance Cathodes for Lithium-Ion Batteries: The Impact of Size and Morphology of Graphene.
    Fu Y; Wei Q; Zhang G; Zhong Y; Moghimian N; Tong X; Sun S
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30871139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical characteristics of lithium iron phosphate with multi-walled carbon nanotube for lithium polymer batteries.
    Jin EM; Jin B; Park KH; Gu HB; Park GC; Kim KW
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5057-61. PubMed ID: 19198390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lithium Iron Phosphate/Carbon (LFP/C) Composite Using Nanocellulose as a Reducing Agent and Carbon Source.
    Kroff M; Hevia SA; O'Shea JN; Muro IG; Palomares V; Rojo T; Del Río R
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TiO2-grafted multi-walled carbon nanotubes for dye-sensitized solar cells.
    Hwang YH; Kim H; Zong K; Pyo M
    J Nanosci Nanotechnol; 2012 May; 12(5):4127-31. PubMed ID: 22852357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of Electrochemical Performance of LiFePO
    Yi D; Cui X; Li N; Zhang L; Yang D
    ACS Omega; 2020 May; 5(17):9752-9758. PubMed ID: 32391462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Desired crystal oriented LiFePO4 nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage.
    Wang B; Liu A; Abdulla WA; Wang D; Zhao XS
    Nanoscale; 2015 May; 7(19):8819-28. PubMed ID: 25908535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical properties of thin PVDF/MWNT (multi-walled carbon nanotube) composite films by melt blending.
    Hong SM; Hwang SS
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4860-3. PubMed ID: 19049125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Stable and Flexible Pressure Sensors with Modified Multi-Walled Carbon Nanotube/Polymer Composites for Human Monitoring.
    He Y; Ming Y; Li W; Li Y; Wu M; Song J; Li X; Liu H
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29701643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.