These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 23882813)

  • 1. Long-term dispersion stability and adhesion promotion of aqueous Cu nano-ink for flexible printed electronics.
    Seo YH; Jeong S; Jo Y; Choi Y; Ryu BH; Han G; Lee M
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5661-4. PubMed ID: 23882813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of Hybrid Ink Formulation and IPL Sintering Process for Ink-Jet 3D Printing.
    Lee JY; Choi CS; Hwang KT; Han KS; Kim JH; Nahm S; Kim BS
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34069153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics.
    Joo SJ; Hwang HJ; Kim HS
    Nanotechnology; 2014 Jul; 25(26):265601. PubMed ID: 24916116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of Conductive Copper Films on Flexible Polymer Substrates by Low-Temperature Sintering of Composite Cu Ink in Air.
    Kanzaki M; Kawaguchi Y; Kawasaki H
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20852-20858. PubMed ID: 28574247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable aqueous based Cu nanoparticle ink for printing well-defined highly conductive features on a plastic substrate.
    Jeong S; Song HC; Lee WW; Lee SS; Choi Y; Son W; Kim ED; Paik CH; Oh SH; Ryu BH
    Langmuir; 2011 Mar; 27(6):3144-9. PubMed ID: 21338069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile Preparation of Monodisperse Cu@Ag Core-Shell Nanoparticles for Conductive Ink in Printing Electronics.
    Li G; Yu X; Zhang R; Ouyang Q; Sun R; Cao L; Zhu P
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Ag@Cu Water-Based Nanomaterial Conductive Ink in 3D Printing.
    Zhao C; Wang J; Zhang Z; Qian B
    3D Print Addit Manuf; 2023 Jun; 10(3):552-558. PubMed ID: 37346186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrahigh Conductivity and Superior Interfacial Adhesion of a Nanostructured, Photonic-Sintered Copper Membrane for Printed Flexible Hybrid Electronics.
    Kwon YT; Kim YS; Lee Y; Kwon S; Lim M; Song Y; Choa YH; Yeo WH
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):44071-44079. PubMed ID: 30452228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-Silver Ink of High Conductivity and Low Sintering Temperature for Paper Electronics.
    Mo L; Guo Z; Wang Z; Yang L; Fang Y; Xin Z; Li X; Chen Y; Cao M; Zhang Q; Li L
    Nanoscale Res Lett; 2019 Jun; 14(1):197. PubMed ID: 31172304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-pulse flash light sintering of bimodal Cu nanoparticle-ink for highly conductive printed Cu electrodes.
    Yu MH; Joo SJ; Kim HS
    Nanotechnology; 2017 May; 28(20):205205. PubMed ID: 28402291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface modification of oleylamine-capped Ag-Cu nanoparticles to fabricate low-temperature-sinterable Ag-Cu nanoink.
    Kim NR; Lee YJ; Lee C; Koo J; Lee HM
    Nanotechnology; 2016 Aug; 27(34):345706. PubMed ID: 27454465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Synthesis of Copper Nanoparticles for Printed Electronic Materials Using Liquid Phase Reduction Method.
    Li K; Jiang X
    Materials (Basel); 2024 Jun; 17(13):. PubMed ID: 38998152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics.
    Rager MS; Aytug T; Veith GM; Joshi P
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple and green fabrication process of nano silver conductive ink and the application in frequency selective surface.
    Deng D; Chen Z; Hu Y; Ma J; Liu P; Tong Y
    Nanotechnology; 2020 Mar; 31(10):105705. PubMed ID: 31751981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The synthesis and characterization of metal nanoparticles using a modified electrolysis method for conductive ink in ink-jet printing technology.
    Lee KJ; Lim B; Jeong YH; Hong SJ; Lee KB; Kim KD; Kim J; Kim HT; Choa YH
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5062-5. PubMed ID: 19198391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Study of the Preparation and Properties of Antioxidative Copper Inks with High Electrical Conductivity.
    Tsai CY; Chang WC; Chen GL; Chung CH; Liang JX; Ma WY; Yang TN
    Nanoscale Res Lett; 2015 Dec; 10(1):357. PubMed ID: 26370132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Replacement reaction-assisted synthesis of silver nanoparticles by jet for conductive ink.
    Murtaza M; Hussain N; Sen L; Wu H
    Nanotechnology; 2020 Mar; 31(11):115301. PubMed ID: 31791036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering.
    Wang BY; Yoo TH; Song YW; Lim DS; Oh YJ
    ACS Appl Mater Interfaces; 2013 May; 5(10):4113-9. PubMed ID: 23586602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A low sintering temperature and electrical performance of nanoparticle copper ink for use in ink-jet printing.
    Cho MS; Choi WH; Kim SG; Kim IH; Lee Y
    J Nanosci Nanotechnol; 2010 Oct; 10(10):6888-91. PubMed ID: 21137818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of conductive Cu thin film by the reaction of Cu nitrate with polymers.
    Yang S; Yoon JC; Yun JY; Kim YJ; Yu JH
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6342-4. PubMed ID: 24205657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.