These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A novel nonenzymatic amperometric hydrogen peroxide sensor based on CuO@Cu2O nanowires embedded into poly(vinyl alcohol). Chirizzi D; Guascito MR; Filippo E; Tepore A Talanta; 2016 Jan; 147():124-31. PubMed ID: 26592586 [TBL] [Abstract][Full Text] [Related]
3. ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation. Kargar A; Jing Y; Kim SJ; Riley CT; Pan X; Wang D ACS Nano; 2013 Dec; 7(12):11112-20. PubMed ID: 24205982 [TBL] [Abstract][Full Text] [Related]
4. Enhanced adhesion and field emission of CuO nanowires synthesized by simply modified thermal oxidation technique. Tang CM; Wang YB; Yao RH; Ning HL; Qiu WQ; Liu ZW Nanotechnology; 2016 Sep; 27(39):395605. PubMed ID: 27560484 [TBL] [Abstract][Full Text] [Related]
5. Catalyst free growth of ZnO nanowires on graphene and graphene oxide and its enhanced photoluminescence and photoresponse. Biroju RK; Tilak N; Rajender G; Dhara S; Giri PK Nanotechnology; 2015 Apr; 26(14):145601. PubMed ID: 25772263 [TBL] [Abstract][Full Text] [Related]
6. Controlling the growth of single crystal ZnO nanowires by tuning the atomic layer deposition parameters of the ZnO seed layer. Galan-Gonzalez A; Gallant A; Zeze DA; Atkinson D Nanotechnology; 2019 Jul; 30(30):305602. PubMed ID: 30974422 [TBL] [Abstract][Full Text] [Related]
7. Electrical and Thermal Conductivities of Single Cu De Carlo I; Baudino L; Klapetek P; Serrapede M; Michieletti F; De Leo N; Pirri F; Boarino L; Lamberti A; Milano G Nanomaterials (Basel); 2023 Oct; 13(21):. PubMed ID: 37947669 [TBL] [Abstract][Full Text] [Related]
8. Indirect Phase Transformation of CuO to Cu2O on a Nanowire Surface. Wu F; Banerjee S; Li H; Myung Y; Banerjee P Langmuir; 2016 May; 32(18):4485-93. PubMed ID: 27093222 [TBL] [Abstract][Full Text] [Related]
9. A long-term oxidation barrier for copper nanowires: graphene says yes. Shi L; Wang R; Zhai H; Liu Y; Gao L; Sun J Phys Chem Chem Phys; 2015 Feb; 17(6):4231-6. PubMed ID: 25571983 [TBL] [Abstract][Full Text] [Related]
10. Role of surface oxidation on the size dependent mechanical properties of nickel nanowires: a ReaxFF molecular dynamics study. Aral G; Islam MM; van Duin ACT Phys Chem Chem Phys; 2017 Dec; 20(1):284-298. PubMed ID: 29205239 [TBL] [Abstract][Full Text] [Related]
11. Size-Dependent Thresholds in CuO Nanowires: Investigation of Growth from Microstructured Thin Films for Gas Sensing. Maier C; Leitgeb V; Egger L; Köck A Nanomaterials (Basel); 2024 Jul; 14(14):. PubMed ID: 39057883 [TBL] [Abstract][Full Text] [Related]
12. Efficiency Enhancement of Perovskite Solar Cells via Electrospun CuO Nanowires as Buffer Layers. Sun Q; Zhou S; Shi X; Wang X; Gao L; Li Z; Hao Y ACS Appl Mater Interfaces; 2018 Apr; 10(13):11289-11296. PubMed ID: 29542316 [TBL] [Abstract][Full Text] [Related]
13. Joining copper oxide nanotube arrays driven by the nanoscale Kirkendall effect. Chun SR; Sasangka WA; Ng MZ; Liu Q; Du A; Zhu J; Ng CM; Liu ZQ; Chiam SY; Gan CL Small; 2013 Aug; 9(15):2546-52, 2545. PubMed ID: 23401318 [TBL] [Abstract][Full Text] [Related]
14. Sensitive electrochemical nonenzymatic glucose sensing based on anodized CuO nanowires on three-dimensional porous copper foam. Li Z; Chen Y; Xin Y; Zhang Z Sci Rep; 2015 Nov; 5():16115. PubMed ID: 26522446 [TBL] [Abstract][Full Text] [Related]
15. Triaxially uniform high-quality Al Sarkar R; Ghosh K; Bhunia S; Nag D; Khiangte KR; Laha A Nanotechnology; 2019 Feb; 30(6):065603. PubMed ID: 30530937 [TBL] [Abstract][Full Text] [Related]
16. Analysis of copper incorporation into zinc oxide nanowires. Eustis S; Meier DC; Beversluis MR; Nikoobakht B ACS Nano; 2008 Feb; 2(2):368-76. PubMed ID: 19206639 [TBL] [Abstract][Full Text] [Related]
17. CuO Nanowires Fabricated by Thermal Oxidation of Cu Foils towards Electrochemical Detection of Glucose. Cao X Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422439 [TBL] [Abstract][Full Text] [Related]
18. Controlled fabrication of photoactive copper oxide-cobalt oxide nanowire heterostructures for efficient phenol photodegradation. Shi W; Chopra N ACS Appl Mater Interfaces; 2012 Oct; 4(10):5590-607. PubMed ID: 22985284 [TBL] [Abstract][Full Text] [Related]
19. Facile synthesis, growth mechanism and reversible superhydrophobic and superhydrophilic properties of non-flaking CuO nanowires grown from porous copper substrates. Zhang Qb; Xu D; Hung TF; Zhang K Nanotechnology; 2013 Feb; 24(6):065602. PubMed ID: 23340193 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and characterization of flower-like CuO-ZnO heterostructure nanowire arrays by photochemical deposition. Jung S; Jeon S; Yong K Nanotechnology; 2011 Jan; 22(1):015606. PubMed ID: 21135458 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]