These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 23882946)
1. Metal solubilization from powdered printed circuit boards by microbial consortium from bauxite and pyrite ores. Adhapure NN; Waghmare SS; Hamde VS; Deshmukh AM Prikl Biokhim Mikrobiol; 2013; 49(3):279-84. PubMed ID: 23882946 [TBL] [Abstract][Full Text] [Related]
2. Chemical and biological processes for multi-metal extraction from waste printed circuit boards of computers and mobile phones. Shah MB; Tipre DR; Dave SR Waste Manag Res; 2014 Nov; 32(11):1134-41. PubMed ID: 25278513 [TBL] [Abstract][Full Text] [Related]
3. Microbial immobilisation and adaptation to Cu Maluleke MD; Kotsiopoulos A; Govender-Opitz E; Harrison STL Res Microbiol; 2024; 175(1-2):104148. PubMed ID: 37813270 [TBL] [Abstract][Full Text] [Related]
4. Copper recovery from waste printed circuit boards using pyrite as the bioleaching substrate. Xie Z; Mahmood Q; Zhang S Environ Sci Pollut Res Int; 2024 May; 31(23):34282-34294. PubMed ID: 38698096 [TBL] [Abstract][Full Text] [Related]
5. Development of two-step process for enhanced biorecovery of Cu-Zn-Ni from computer printed circuit boards. Shah MB; Tipre DR; Purohit MS; Dave SR J Biosci Bioeng; 2015 Aug; 120(2):167-73. PubMed ID: 25636979 [TBL] [Abstract][Full Text] [Related]
6. Metal bioleaching from printed circuit boards by bio-Fenton process: Optimization and prediction by response surface methodology and artificial intelligence models. Trivedi A; Hait S J Environ Manage; 2023 Jan; 326(Pt B):116797. PubMed ID: 36423410 [TBL] [Abstract][Full Text] [Related]
7. Synergistic effect of biogenic Fe Panda S; Akcil A; Mishra S; Erust C J Hazard Mater; 2017 Mar; 325():59-70. PubMed ID: 27915100 [TBL] [Abstract][Full Text] [Related]
8. Bioleaching of multiple metals from contaminated sediment by moderate thermophiles. Gan M; Jie S; Li M; Zhu J; Liu X Mar Pollut Bull; 2015 Aug; 97(1-2):47-55. PubMed ID: 26140749 [TBL] [Abstract][Full Text] [Related]
9. Bioleaching of multiple heavy metals from contaminated sediment by mesophile consortium. Gan M; Zhou S; Li M; Zhu J; Liu X; Chai L Environ Sci Pollut Res Int; 2015 Apr; 22(8):5807-16. PubMed ID: 25384695 [TBL] [Abstract][Full Text] [Related]
10. Chemical and Microbial Leaching of Valuable Metals from PCBs and Tantalum Capacitors of Spent Mobile Phones. Sikander A; Kelly S; Kuchta K; Sievers A; Willner T; Hursthouse AS Int J Environ Res Public Health; 2022 Aug; 19(16):. PubMed ID: 36011640 [TBL] [Abstract][Full Text] [Related]
11. Microbial Bioleaching of Ag, Au and Cu from Printed Circuit Boards of Mobile Phones. Díaz-Martínez ME; Argumedo-Delira R; Sánchez-Viveros G; Alarcón A; Mendoza-López MR Curr Microbiol; 2019 May; 76(5):536-544. PubMed ID: 30796475 [TBL] [Abstract][Full Text] [Related]
12. Mechano-microbial systems: An ecofriendly approach for copper bioleaching from waste printed circuit board. Awasthi AK; Li J Waste Manag Res; 2019 Jun; 37(6):656-661. PubMed ID: 30774003 [TBL] [Abstract][Full Text] [Related]
13. A novel approach for recovery of metals from waste printed circuit boards and simultaneous removal of iron from steel pickling waste liquor by two-step hydrometallurgical method. Wang L; Li Q; Li Y; Sun X; Li J; Shen J; Han W; Wang L Waste Manag; 2018 Jan; 71():411-419. PubMed ID: 29030122 [TBL] [Abstract][Full Text] [Related]
14. Use of large pieces of printed circuit boards for bioleaching to avoid 'precipitate contamination problem' and to simplify overall metal recovery. Adhapure NN; Dhakephalkar PK; Dhakephalkar AP; Tembhurkar VR; Rajgure AV; Deshmukh AM MethodsX; 2014; 1():181-6. PubMed ID: 26150951 [TBL] [Abstract][Full Text] [Related]
15. Bioleaching of pyritic coal wastes: bioprospecting and efficiency of selected consortia. Joulian C; Fonti V; Chapron S; Bryan CG; Guezennec AG Res Microbiol; 2020; 171(7):260-270. PubMed ID: 32890633 [TBL] [Abstract][Full Text] [Related]
16. Qualitative and quantitative metals liberation assessment for characterization of various waste printed circuit boards for recycling. Priya A; Hait S Environ Sci Pollut Res Int; 2017 Dec; 24(35):27445-27456. PubMed ID: 28980132 [TBL] [Abstract][Full Text] [Related]
17. Environmental and economic performance analysis of recycling waste printed circuit boards using life cycle assessment. Pokhrel P; Lin SL; Tsai CT J Environ Manage; 2020 Dec; 276():111276. PubMed ID: 32871467 [TBL] [Abstract][Full Text] [Related]
18. Bioleaching of E-Waste: Influence of Printed Circuit Boards on the Activity of Acidophilic Iron-Oxidizing Bacteria. Anaya-Garzon J; Hubau A; Joulian C; Guezennec AG Front Microbiol; 2021; 12():669738. PubMed ID: 34489879 [TBL] [Abstract][Full Text] [Related]
19. Isolation and identification of Penicillium chrysogenum strain Y5 and its copper extraction characterization from waste printed circuit boards. Xia MC; Bao P; Liu AJ; Zhang SS; Peng TJ; Shen L; Yu RL; Wu XL; Li JK; Liu YD; Chen M; Qiu GZ; Zeng WM J Biosci Bioeng; 2018 Jul; 126(1):78-87. PubMed ID: 29573983 [TBL] [Abstract][Full Text] [Related]
20. Bioleaching of metals from printed circuit boards supported with surfactant-producing bacteria. Karwowska E; Andrzejewska-Morzuch D; Łebkowska M; Tabernacka A; Wojtkowska M; Telepko A; Konarzewska A J Hazard Mater; 2014 Jan; 264():203-10. PubMed ID: 24295772 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]