These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 23882997)

  • 1. FluoQ: a tool for rapid analysis of multiparameter fluorescence imaging data applied to oscillatory events.
    Stein F; Kress M; Reither S; Piljić A; Schultz C
    ACS Chem Biol; 2013 Sep; 8(9):1862-8. PubMed ID: 23882997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Receptor-regulated dynamic interaction between endothelial nitric oxide synthase and calmodulin revealed by fluorescence resonance energy transfer in living cells.
    Jobin CM; Chen H; Lin AJ; Yacono PW; Igarashi J; Michel T; Golan DE
    Biochemistry; 2003 Oct; 42(40):11716-25. PubMed ID: 14529282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Down-regulation of 1D-myo-inositol 1,4,5-trisphosphate 3-kinase A protein expression in oral squamous cell carcinoma.
    Kato H; Uzawa K; Onda T; Kato Y; Saito K; Nakashima D; Ogawara K; Bukawa H; Yokoe H; Tanzawa H
    Int J Oncol; 2006 Apr; 28(4):873-81. PubMed ID: 16525636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal microscopic systems for long-term imaging of intracellular calcium using a ratiometric genetically-encoded calcium indicator.
    Miyamoto A; Bannai H; Michikawa T; Mikoshiba K
    Biochem Biophys Res Commun; 2013 May; 434(2):252-7. PubMed ID: 23535376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging H2O2 microdomains in receptor tyrosine kinases signaling.
    Mishina NM; Markvicheva KN; Fradkov AF; Zagaynova EV; Schultz C; Lukyanov S; Belousov VV
    Methods Enzymol; 2013; 526():175-87. PubMed ID: 23791101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging intracellular signaling using two-photon fluorescent lifetime imaging microscopy.
    Yasuda R
    Cold Spring Harb Protoc; 2012 Nov; 2012(11):1121-8. PubMed ID: 23118363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing of fluorescence lifetime image using modified phasor approach: homo-FRET from the acceptor.
    Zhou Y; Bai Y; Chen C; Dickenson JM
    J Fluoresc; 2013 Jul; 23(4):725-32. PubMed ID: 23494166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elimination of environmental sensitivity in a cameleon FRET-based calcium sensor via replacement of the acceptor with Venus.
    Evanko DS; Haydon PG
    Cell Calcium; 2005 Apr; 37(4):341-8. PubMed ID: 15755495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer program for analyzing donor photobleaching FRET image series.
    Szentesi G; Vereb G; Horváth G; Bodnár A; Fábián A; Matkó J; Gáspár R; Damjanovich S; Mátyus L; Jenei A
    Cytometry A; 2005 Oct; 67(2):119-28. PubMed ID: 16163694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global analysis of Förster resonance energy transfer in live cells measured by fluorescence lifetime imaging microscopy exploiting the rise time of acceptor fluorescence.
    Laptenok SP; Borst JW; Mullen KM; van Stokkum IH; Visser AJ; van Amerongen H
    Phys Chem Chem Phys; 2010 Jul; 12(27):7593-602. PubMed ID: 20490396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of intensity-based ratiometric FRET in image cytometry--approaches and a software solution.
    Roszik J; Lisboa D; Szöllosi J; Vereb G
    Cytometry A; 2009 Sep; 75(9):761-7. PubMed ID: 19591240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Method of receiving differential images of objects autofluorescence in the process of photobleaching].
    Klimov AA; Klimov DA
    Biofizika; 2012; 57(5):891-8. PubMed ID: 23136785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous recording of multiple cellular events by FRET.
    Piljic A; Schultz C
    ACS Chem Biol; 2008 Mar; 3(3):156-60. PubMed ID: 18355004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid development of genetically encoded FRET reporters.
    Piljić A; de Diego I; Wilmanns M; Schultz C
    ACS Chem Biol; 2011 Jul; 6(7):685-91. PubMed ID: 21506563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs.
    Feige JN; Sage D; Wahli W; Desvergne B; Gelman L
    Microsc Res Tech; 2005 Sep; 68(1):51-8. PubMed ID: 16208719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fluorescence-based method for evaluating inositol 1,4,5-trisphosphate receptor ligands: determination of subtype selectivity and partial agonist effects.
    Tanimura A; Mochizuki T; Morita T; Nezu A; Tojyo Y; Arisawa M; Shuto S
    J Biotechnol; 2013 Sep; 167(3):248-54. PubMed ID: 23830902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetically encoded FRET-based biosensors for multiparameter fluorescence imaging.
    Carlson HJ; Campbell RE
    Curr Opin Biotechnol; 2009 Feb; 20(1):19-27. PubMed ID: 19223167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FRETcalc plugin for calculation of FRET in non-continuous intracellular compartments.
    Stepensky D
    Biochem Biophys Res Commun; 2007 Aug; 359(3):752-8. PubMed ID: 17555710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-lapse microscopy and fluorescence resonance energy transfer to analyze the dynamics and interactions of nucleolar proteins in living cells.
    Louvet E; Tramier M; Angelier N; Hernandez-Verdun D
    Methods Mol Biol; 2008; 463():123-35. PubMed ID: 18951165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of caspase-3 activation by fitting fluorescence emission spectra in living cells.
    Wang L; Chen T; Qu J; Wei X
    Micron; 2009 Dec; 40(8):811-20. PubMed ID: 19647441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.