BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

568 related articles for article (PubMed ID: 23883044)

  • 61. Molecular Aggregation Behavior and Microscopic Heterogeneity in Binary Osmolyte-Water Solutions.
    Seo J; Singh R; Ryu J; Choi JH
    J Chem Inf Model; 2024 Jan; 64(1):138-149. PubMed ID: 37983534
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Spatio-temporal characteristics of the transfer free energy of apomyoglobin into the molecular crowding condition with trimethylamine N-oxide: a study with three types of the Kirkwood-Buff integral.
    Yu I; Nakada K; Nagaoka M
    J Phys Chem B; 2012 Apr; 116(13):4080-8. PubMed ID: 22372820
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Destabilization of the hydrogen-bond structure of water by the osmolyte trimethylamine N-oxide.
    Rezus YL; Bakker HJ
    J Phys Chem B; 2009 Apr; 113(13):4038-44. PubMed ID: 19425246
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Protein Stability in TMAO and Mixed Urea-TMAO Solutions.
    Ganguly P; Polák J; van der Vegt NFA; Heyda J; Shea JE
    J Phys Chem B; 2020 Jul; 124(29):6181-6197. PubMed ID: 32495623
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Molecular mechanism for the preferential exclusion of TMAO from protein surfaces.
    Canchi DR; Jayasimha P; Rau DC; Makhatadze GI; Garcia AE
    J Phys Chem B; 2012 Oct; 116(40):12095-104. PubMed ID: 22970901
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Exploring the Counteracting Mechanism of Trehalose on Urea Conferred Protein Denaturation: A Molecular Dynamics Simulation Study.
    Paul S; Paul S
    J Phys Chem B; 2015 Jul; 119(30):9820-34. PubMed ID: 26115143
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Backbone additivity in the transfer model of protein solvation.
    Hu CY; Kokubo H; Lynch GC; Bolen DW; Pettitt BM
    Protein Sci; 2010 May; 19(5):1011-22. PubMed ID: 20306490
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Molecular insight into the counteraction of trehalose on urea-induced protein denaturation using molecular dynamics simulation.
    Zhang N; Liu FF; Dong XY; Sun Y
    J Phys Chem B; 2012 Jun; 116(24):7040-7. PubMed ID: 22607153
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Complex formation in aqueous trimethylamine-N-oxide (TMAO) solutions.
    Hunger J; Tielrooij KJ; Buchner R; Bonn M; Bakker HJ
    J Phys Chem B; 2012 Apr; 116(16):4783-95. PubMed ID: 22458563
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structure and effect of sarcosine on water and urea by using molecular dynamics simulations: Implications in protein stabilization.
    Kumar N; Kishore N
    Biophys Chem; 2013 Jan; 171():9-15. PubMed ID: 23266436
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Entropic stabilization of proteins by TMAO.
    Cho SS; Reddy G; Straub JE; Thirumalai D
    J Phys Chem B; 2011 Nov; 115(45):13401-7. PubMed ID: 21985427
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Counteracting Effects of Trimethylamine
    Malik R; Chandra A
    J Phys Chem B; 2023 Aug; 127(33):7372-7383. PubMed ID: 37566900
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Hydrophobic interactions in water-trimethylamine-N-oxide solutions: the effects of pressure.
    Biyani N; Paul S
    J Phys Chem B; 2009 Jul; 113(29):9644-5. PubMed ID: 19569639
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Hydration of Simple Model Peptides in Aqueous Osmolyte Solutions.
    Panuszko A; Pieloszczyk M; Kuffel A; Jacek K; Biernacki KA; Demkowicz S; Stangret J; Bruździak P
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502252
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effects of Urea and TMAO on Lipid Self-Assembly under Osmotic Stress Conditions.
    Pham QD; Wolde-Kidan A; Gupta A; Schlaich A; Schneck E; Netz RR; Sparr E
    J Phys Chem B; 2018 Jun; 122(25):6471-6482. PubMed ID: 29693387
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Aqueous urea solutions: structure, energetics, and urea aggregation.
    Stumpe MC; Grubmüller H
    J Phys Chem B; 2007 Jun; 111(22):6220-8. PubMed ID: 17497766
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effects of Trimethylamine- N-oxide (TMAO) on Hydrophobic and Charged Interactions.
    Su Z; Ravindhran G; Dias CL
    J Phys Chem B; 2018 May; 122(21):5557-5566. PubMed ID: 29482320
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Interactions of trimethylamine N-oxide and water with cyclo-alanylglycine.
    Hovagimyan KG; Gerig JT
    J Phys Chem B; 2005 Dec; 109(50):24142-51. PubMed ID: 16375406
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Microscopic stability of cold shock protein A examined by NMR native state hydrogen exchange as a function of urea and trimethylamine N-oxide.
    Jaravine VA; Rathgeb-Szabo K; Alexandrescu AT
    Protein Sci; 2000 Feb; 9(2):290-301. PubMed ID: 10716181
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Trimethylamine N-oxide counteracts the denaturing effects of urea or GdnHCl on protein denatured state.
    Venkatesu P; Lee MJ; Lin HM
    Arch Biochem Biophys; 2007 Oct; 466(1):106-15. PubMed ID: 17697669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.