BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

565 related articles for article (PubMed ID: 23883044)

  • 81. Trimethylamine N-oxide counteracts the denaturing effects of urea or GdnHCl on protein denatured state.
    Venkatesu P; Lee MJ; Lin HM
    Arch Biochem Biophys; 2007 Oct; 466(1):106-15. PubMed ID: 17697669
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Effects of Trimethylamine-N-oxide on the Conformation of Peptides and its Implications for Proteins.
    Su Z; Mahmoudinobar F; Dias CL
    Phys Rev Lett; 2017 Sep; 119(10):108102. PubMed ID: 28949191
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Trimethylamine N-oxide stabilizes RNA tertiary structure and attenuates the denaturating effects of urea.
    Gluick TC; Yadav S
    J Am Chem Soc; 2003 Apr; 125(15):4418-9. PubMed ID: 12683801
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Double resolution model for studying TMAO/water effective interactions.
    Larini L; Shea JE
    J Phys Chem B; 2013 Oct; 117(42):13268-77. PubMed ID: 23786631
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Counteraction ability of TMAO toward different denaturing agents.
    Vigorita M; Cozzolino S; Oliva R; Graziano G; Del Vecchio P
    Biopolymers; 2018 Aug; 109(10):e23104. PubMed ID: 29411350
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Molecular Interpretation of Preferential Interactions in Protein Solvation: A Solvent-Shell Perspective by Means of Minimum-Distance Distribution Functions.
    Martínez L; Shimizu S
    J Chem Theory Comput; 2017 Dec; 13(12):6358-6372. PubMed ID: 29120639
    [TBL] [Abstract][Full Text] [Related]  

  • 87. The effects of side chain hydrophobicity on the denaturation of simple beta-hairpins.
    Wei H; Shao Q; Gao YQ
    Phys Chem Chem Phys; 2010 Aug; 12(32):9292-9. PubMed ID: 20571679
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Interactions of a DNA G-quadruplex with TMAO and urea: a molecular dynamics study on co-solute compensation mechanisms.
    Oprzeska-Zingrebe EA; Smiatek J
    Phys Chem Chem Phys; 2021 Jan; 23(2):1254-1264. PubMed ID: 33355575
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Persistent homology analysis of osmolyte molecular aggregation and their hydrogen-bonding networks.
    Xia K; Anand DV; Shikhar S; Mu Y
    Phys Chem Chem Phys; 2019 Oct; 21(37):21038-21048. PubMed ID: 31528920
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Raman spectroscopic signatures of noncovalent interactions between trimethylamine N-oxide (TMAO) and water.
    Munroe KL; Magers DH; Hammer NI
    J Phys Chem B; 2011 Jun; 115(23):7699-707. PubMed ID: 21598992
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: lessons for protein denaturation mechanism.
    O'Brien EP; Dima RI; Brooks B; Thirumalai D
    J Am Chem Soc; 2007 Jun; 129(23):7346-53. PubMed ID: 17503819
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Effects of pH and temperature on the structural and thermodynamic character of alpha-syn12 peptide in aqueous solution.
    Cao Z; Liu L; Wang J
    J Biomol Struct Dyn; 2010 Dec; 28(3):343-53. PubMed ID: 20919750
    [TBL] [Abstract][Full Text] [Related]  

  • 93. A first principles molecular dynamics study of lithium atom solvation in binary liquid mixture of water and ammonia: structural, electronic, and dynamical properties.
    Pratihar S; Chandra A
    J Chem Phys; 2011 Jan; 134(2):024519. PubMed ID: 21241132
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Regulation and aggregation of intrinsically disordered peptides.
    Levine ZA; Larini L; LaPointe NE; Feinstein SC; Shea JE
    Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2758-63. PubMed ID: 25691742
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Can simulations quantitatively predict peptide transfer free energies to urea solutions? Thermodynamic concepts and force field limitations.
    Horinek D; Netz RR
    J Phys Chem A; 2011 Jun; 115(23):6125-36. PubMed ID: 21361327
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Density variations of TMAO solutions in the kilobar range: Experiments, PC-SAFT predictions, and molecular dynamics simulations.
    Knierbein M; Held C; Hölzl C; Horinek D; Paulus M; Sadowski G; Sternemann C; Nase J
    Biophys Chem; 2019 Oct; 253():106222. PubMed ID: 31421516
    [TBL] [Abstract][Full Text] [Related]  

  • 97. THz spectra and dynamics of aqueous solutions studied by the ultrafast optical Kerr effect.
    Mazur K; Heisler IA; Meech SR
    J Phys Chem B; 2011 Mar; 115(11):2563-73. PubMed ID: 21355600
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Hydrogen bonding progressively strengthens upon transfer of the protein urea-denatured state to water and protecting osmolytes.
    Holthauzen LM; Rösgen J; Bolen DW
    Biochemistry; 2010 Feb; 49(6):1310-8. PubMed ID: 20073511
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Ultrafast dynamics and hydrogen-bond structure in aqueous solutions of model peptides.
    Mazur K; Heisler IA; Meech SR
    J Phys Chem B; 2010 Aug; 114(32):10684-91. PubMed ID: 20666567
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Structural and dynamic properties of water within the solvation layer around various conformations of the glycine-based polypeptide.
    Kuffel A; Zielkiewicz J
    J Phys Chem B; 2008 Dec; 112(48):15503-12. PubMed ID: 18989911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.