These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23883166)

  • 1. An HD-GYP cyclic di-guanosine monophosphate phosphodiesterase with a non-heme diiron-carboxylate active site.
    Miner KD; Klose KE; Kurtz DM
    Biochemistry; 2013 Aug; 52(32):5329-31. PubMed ID: 23883166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structure of an unconventional HD-GYP protein from Bdellovibrio reveals the roles of conserved residues in this class of cyclic-di-GMP phosphodiesterases.
    Lovering AL; Capeness MJ; Lambert C; Hobley L; Sockett RE
    mBio; 2011; 2(5):. PubMed ID: 21990613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active Site Metal Occupancy and Cyclic Di-GMP Phosphodiesterase Activity of Thermotoga maritima HD-GYP.
    Miner KD; Kurtz DM
    Biochemistry; 2016 Feb; 55(6):970-9. PubMed ID: 26786892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and Characterization of a Redox Sensor Phosphodiesterase from
    Kitanishi K; Igarashi J; Matsuoka A; Unno M
    Biochemistry; 2020 Mar; 59(8):983-991. PubMed ID: 32045213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finally! The structural secrets of a HD-GYP phosphodiesterase revealed.
    Wigren E; Liang ZX; Römling U
    Mol Microbiol; 2014 Jan; 91(1):1-5. PubMed ID: 24236493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of an HD-GYP domain cyclic-di-GMP phosphodiesterase reveals an enzyme with a novel trinuclear catalytic iron centre.
    Bellini D; Caly DL; McCarthy Y; Bumann M; An SQ; Dow JM; Ryan RP; Walsh MA
    Mol Microbiol; 2014 Jan; 91(1):26-38. PubMed ID: 24176013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A systematic analysis of the in vitro and in vivo functions of the HD-GYP domain proteins of Vibrio cholerae.
    McKee RW; Kariisa A; Mudrak B; Whitaker C; Tamayo R
    BMC Microbiol; 2014 Oct; 14():272. PubMed ID: 25343965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants.
    Dow JM; Fouhy Y; Lucey JF; Ryan RP
    Mol Plant Microbe Interact; 2006 Dec; 19(12):1378-84. PubMed ID: 17153922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas-Selective Catalytic Regulation by a Newly Identified Globin-Coupled Sensor Phosphodiesterase Containing an HD-GYP Domain from the Human Pathogen
    Kitanishi K; Aoyama N; Shimonaka M
    Biochemistry; 2024 Feb; 63(4):523-532. PubMed ID: 38264987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A pGpG-specific phosphodiesterase regulates cyclic di-GMP signaling in Vibrio cholerae.
    Heo K; Lee JW; Jang Y; Kwon S; Lee J; Seok C; Ha NC; Seok YJ
    J Biol Chem; 2022 Mar; 298(3):101626. PubMed ID: 35074425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation and dimerization of the phosphodiesterase active site of the Pseudomonas aeruginosa MorA, a bi-functional c-di-GMP regulator.
    Phippen CW; Mikolajek H; Schlaefli HG; Keevil CW; Webb JS; Tews I
    FEBS Lett; 2014 Dec; 588(24):4631-6. PubMed ID: 25447517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HD-[HD-GYP] Phosphodiesterases: Activities and Evolutionary Diversification within the HD-GYP Family.
    Sun S; Pandelia ME
    Biochemistry; 2020 Jun; 59(25):2340-2350. PubMed ID: 32496757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis of functional diversification of the HD-GYP domain revealed by the Pseudomonas aeruginosa PA4781 protein, which displays an unselective bimetallic binding site.
    Rinaldo S; Paiardini A; Stelitano V; Brunotti P; Cervoni L; Fernicola S; Protano C; Vitali M; CutruzzolĂ  F; Giardina G
    J Bacteriol; 2015 Apr; 197(8):1525-35. PubMed ID: 25691523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures of c-di-GMP/cGAMP degrading phosphodiesterase VcEAL: identification of a novel conformational switch and its implication.
    Yadav M; Pal K; Sen U
    Biochem J; 2019 Nov; 476(21):3333-3353. PubMed ID: 31647518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A bacterial hemerythrin domain regulates the activity of a Vibrio cholerae diguanylate cyclase.
    Schaller RA; Ali SK; Klose KE; Kurtz DM
    Biochemistry; 2012 Oct; 51(43):8563-70. PubMed ID: 23057727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. c-di-GMP turn-over in Clostridium difficile is controlled by a plethora of diguanylate cyclases and phosphodiesterases.
    Bordeleau E; Fortier LC; Malouin F; Burrus V
    PLoS Genet; 2011 Mar; 7(3):e1002039. PubMed ID: 21483756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and Biochemical Insight into the Mechanism of Rv2837c from Mycobacterium tuberculosis as a c-di-NMP Phosphodiesterase.
    He Q; Wang F; Liu S; Zhu D; Cong H; Gao F; Li B; Wang H; Lin Z; Liao J; Gu L
    J Biol Chem; 2016 Feb; 291(7):3668-81. PubMed ID: 26668313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inherent regulation of EAL domain-catalyzed hydrolysis of second messenger cyclic di-GMP.
    Sundriyal A; Massa C; Samoray D; Zehender F; Sharpe T; Jenal U; Schirmer T
    J Biol Chem; 2014 Mar; 289(10):6978-6990. PubMed ID: 24451384
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Sun S; Wang R; Pandelia ME
    Biochemistry; 2022 Sep; 61(17):1801-1809. PubMed ID: 35901269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. More than Enzymes That Make or Break Cyclic Di-GMP-Local Signaling in the Interactome of GGDEF/EAL Domain Proteins of
    Sarenko O; Klauck G; Wilke FM; Pfiffer V; Richter AM; Herbst S; Kaever V; Hengge R
    mBio; 2017 Oct; 8(5):. PubMed ID: 29018125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.