These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 23883276)
1. Iron dissolution of dust source materials during simulated acidic processing: the effect of sulfuric, acetic, and oxalic acids. Chen H; Grassian VH Environ Sci Technol; 2013 Sep; 47(18):10312-21. PubMed ID: 23883276 [TBL] [Abstract][Full Text] [Related]
2. Coal fly ash as a source of iron in atmospheric dust. Chen H; Laskin A; Baltrusaitis J; Gorski CA; Scherer MM; Grassian VH Environ Sci Technol; 2012 Feb; 46(4):2112-20. PubMed ID: 22260270 [TBL] [Abstract][Full Text] [Related]
3. Laboratory study of iron isotope fractionation during dissolution of mineral dust and industrial ash in simulated cloud water. Maters EC; Mulholland DS; Flament P; de Jong J; Mattielli N; Deboudt K; Dhont G; Bychkov E Chemosphere; 2022 Jul; 299():134472. PubMed ID: 35367494 [TBL] [Abstract][Full Text] [Related]
4. Simulated atmospheric processing of iron oxyhydroxide minerals at low pH: roles of particle size and acid anion in iron dissolution. Rubasinghege G; Lentz RW; Scherer MM; Grassian VH Proc Natl Acad Sci U S A; 2010 Apr; 107(15):6628-33. PubMed ID: 20360560 [TBL] [Abstract][Full Text] [Related]
5. Sulfate formation catalyzed by coal fly ash, mineral dust and iron(iii) oxide: variable influence of temperature and light. Gankanda A; Coddens EM; Zhang Y; Cwiertny DM; Grassian VH Environ Sci Process Impacts; 2016 Dec; 18(12):1484-1491. PubMed ID: 27796391 [TBL] [Abstract][Full Text] [Related]
6. Solubility of iron from combustion source particles in acidic media linked to iron speciation. Fu H; Lin J; Shang G; Dong W; Grassian VH; Carmichael GR; Li Y; Chen J Environ Sci Technol; 2012 Oct; 46(20):11119-27. PubMed ID: 22963384 [TBL] [Abstract][Full Text] [Related]
7. Quantifying the Effect of Basic Minerals on Acid- and Ligand-Promoted Dissolution Kinetics of Iron in Simulated Dark Atmospheric Aging of Dust and Coal Fly Ash Particles. Al-Abadleh HA; Smith M; Ogilvie A; Sadiq NW J Phys Chem A; 2024 Sep; 128(38):8198-8208. PubMed ID: 39285699 [TBL] [Abstract][Full Text] [Related]
8. Atmospheric processing outside clouds increases soluble iron in mineral dust. Shi Z; Krom MD; Bonneville S; Benning LG Environ Sci Technol; 2015 Feb; 49(3):1472-7. PubMed ID: 25574950 [TBL] [Abstract][Full Text] [Related]
9. Mass fractions, solubility, speciation and isotopic compositions of iron in coal and municipal waste fly ash. Li R; Zhang H; Wang F; He Y; Huang C; Luo L; Dong S; Jia X; Tang M Sci Total Environ; 2022 Sep; 838(Pt 1):155974. PubMed ID: 35588802 [TBL] [Abstract][Full Text] [Related]
10. Mobilization of soil-borne arsenic by three common organic acids: Dosage and time effects. Onireti OO; Lin C Chemosphere; 2016 Mar; 147():352-60. PubMed ID: 26774299 [TBL] [Abstract][Full Text] [Related]
11. Freezing-Enhanced Dissolution of Iron Oxides: Effects of Inorganic Acid Anions. Jeong D; Kim K; Min DW; Choi W Environ Sci Technol; 2015 Nov; 49(21):12816-22. PubMed ID: 26444653 [TBL] [Abstract][Full Text] [Related]
12. Chemical imaging analysis of environmental particles using the focused ion beam/scanning electron microscopy technique: microanalysis insights into atmospheric chemistry of fly ash. Chen H; Grassian VH; Saraf LV; Laskin A Analyst; 2013 Jan; 138(2):451-60. PubMed ID: 23207643 [TBL] [Abstract][Full Text] [Related]
13. Dissolution of phosphate from pig manure ash using organic and mineral acids. Kootstra AMJ; Brilman DWFW; Kersten SRA Waste Manag; 2019 Apr; 88():141-146. PubMed ID: 31079626 [TBL] [Abstract][Full Text] [Related]
14. Validation of a continuous flow method for the determination of soluble iron in atmospheric dust and volcanic ash. Simonella LE; Gaiero DM; Palomeque ME Talanta; 2014 Oct; 128():248-53. PubMed ID: 25059156 [TBL] [Abstract][Full Text] [Related]
15. Effect of low-molecular-weight organic acids on hematite dissolution promoted by desferrioxamine B. Lin Q; Wang Y; Yang X; Ruan D; Wang S; Wei X; Qiu R Environ Sci Pollut Res Int; 2018 Jan; 25(1):163-173. PubMed ID: 28455567 [TBL] [Abstract][Full Text] [Related]
16. Efficient cellulose dissolution and derivatization enabled by oxalic/sulfuric acid for high-performance cellulose films as food packaging. Yang M; Chen Y; Abdalkarim SYH; Chen X; Yu HY Int J Biol Macromol; 2024 Sep; 276(Pt 1):133799. PubMed ID: 39019367 [TBL] [Abstract][Full Text] [Related]
17. Atmospheric Processing and Iron Mobilization of Ilmenite: Iron-Containing Ternary Oxide in Mineral Dust Aerosol. Hettiarachchi E; Hurab O; Rubasinghege G J Phys Chem A; 2018 Feb; 122(5):1291-1302. PubMed ID: 29336571 [TBL] [Abstract][Full Text] [Related]
18. Formation of metal-organic ligand complexes affects solubility of metals in airborne particles at an urban site in the Po valley. Tapparo A; Di Marco V; Badocco D; D'Aronco S; Soldà L; Pastore P; Mahon BM; Kalberer M; Giorio C Chemosphere; 2020 Feb; 241():125025. PubMed ID: 31604190 [TBL] [Abstract][Full Text] [Related]
19. Investigations of the diurnal cycle and mixing state of oxalic acid in individual particles in Asian aerosol outflow. Sullivan RC; Prather KA Environ Sci Technol; 2007 Dec; 41(23):8062-9. PubMed ID: 18186338 [TBL] [Abstract][Full Text] [Related]
20. Removal of arsenic in coal fly ash by acid washing process using dilute H2SO4 solvent. Kashiwakura S; Ohno H; Matsubae-Yokoyama K; Kumagai Y; Kubo H; Nagasaka T J Hazard Mater; 2010 Sep; 181(1-3):419-25. PubMed ID: 20570439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]