BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23883276)

  • 1. Iron dissolution of dust source materials during simulated acidic processing: the effect of sulfuric, acetic, and oxalic acids.
    Chen H; Grassian VH
    Environ Sci Technol; 2013 Sep; 47(18):10312-21. PubMed ID: 23883276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coal fly ash as a source of iron in atmospheric dust.
    Chen H; Laskin A; Baltrusaitis J; Gorski CA; Scherer MM; Grassian VH
    Environ Sci Technol; 2012 Feb; 46(4):2112-20. PubMed ID: 22260270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laboratory study of iron isotope fractionation during dissolution of mineral dust and industrial ash in simulated cloud water.
    Maters EC; Mulholland DS; Flament P; de Jong J; Mattielli N; Deboudt K; Dhont G; Bychkov E
    Chemosphere; 2022 Jul; 299():134472. PubMed ID: 35367494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulated atmospheric processing of iron oxyhydroxide minerals at low pH: roles of particle size and acid anion in iron dissolution.
    Rubasinghege G; Lentz RW; Scherer MM; Grassian VH
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):6628-33. PubMed ID: 20360560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfate formation catalyzed by coal fly ash, mineral dust and iron(iii) oxide: variable influence of temperature and light.
    Gankanda A; Coddens EM; Zhang Y; Cwiertny DM; Grassian VH
    Environ Sci Process Impacts; 2016 Dec; 18(12):1484-1491. PubMed ID: 27796391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solubility of iron from combustion source particles in acidic media linked to iron speciation.
    Fu H; Lin J; Shang G; Dong W; Grassian VH; Carmichael GR; Li Y; Chen J
    Environ Sci Technol; 2012 Oct; 46(20):11119-27. PubMed ID: 22963384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atmospheric processing outside clouds increases soluble iron in mineral dust.
    Shi Z; Krom MD; Bonneville S; Benning LG
    Environ Sci Technol; 2015 Feb; 49(3):1472-7. PubMed ID: 25574950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass fractions, solubility, speciation and isotopic compositions of iron in coal and municipal waste fly ash.
    Li R; Zhang H; Wang F; He Y; Huang C; Luo L; Dong S; Jia X; Tang M
    Sci Total Environ; 2022 Sep; 838(Pt 1):155974. PubMed ID: 35588802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mobilization of soil-borne arsenic by three common organic acids: Dosage and time effects.
    Onireti OO; Lin C
    Chemosphere; 2016 Mar; 147():352-60. PubMed ID: 26774299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freezing-Enhanced Dissolution of Iron Oxides: Effects of Inorganic Acid Anions.
    Jeong D; Kim K; Min DW; Choi W
    Environ Sci Technol; 2015 Nov; 49(21):12816-22. PubMed ID: 26444653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical imaging analysis of environmental particles using the focused ion beam/scanning electron microscopy technique: microanalysis insights into atmospheric chemistry of fly ash.
    Chen H; Grassian VH; Saraf LV; Laskin A
    Analyst; 2013 Jan; 138(2):451-60. PubMed ID: 23207643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissolution of phosphate from pig manure ash using organic and mineral acids.
    Kootstra AMJ; Brilman DWFW; Kersten SRA
    Waste Manag; 2019 Apr; 88():141-146. PubMed ID: 31079626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of a continuous flow method for the determination of soluble iron in atmospheric dust and volcanic ash.
    Simonella LE; Gaiero DM; Palomeque ME
    Talanta; 2014 Oct; 128():248-53. PubMed ID: 25059156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of low-molecular-weight organic acids on hematite dissolution promoted by desferrioxamine B.
    Lin Q; Wang Y; Yang X; Ruan D; Wang S; Wei X; Qiu R
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):163-173. PubMed ID: 28455567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atmospheric Processing and Iron Mobilization of Ilmenite: Iron-Containing Ternary Oxide in Mineral Dust Aerosol.
    Hettiarachchi E; Hurab O; Rubasinghege G
    J Phys Chem A; 2018 Feb; 122(5):1291-1302. PubMed ID: 29336571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of metal-organic ligand complexes affects solubility of metals in airborne particles at an urban site in the Po valley.
    Tapparo A; Di Marco V; Badocco D; D'Aronco S; Soldà L; Pastore P; Mahon BM; Kalberer M; Giorio C
    Chemosphere; 2020 Feb; 241():125025. PubMed ID: 31604190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigations of the diurnal cycle and mixing state of oxalic acid in individual particles in Asian aerosol outflow.
    Sullivan RC; Prather KA
    Environ Sci Technol; 2007 Dec; 41(23):8062-9. PubMed ID: 18186338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of arsenic in coal fly ash by acid washing process using dilute H2SO4 solvent.
    Kashiwakura S; Ohno H; Matsubae-Yokoyama K; Kumagai Y; Kubo H; Nagasaka T
    J Hazard Mater; 2010 Sep; 181(1-3):419-25. PubMed ID: 20570439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photo-Fenton oxidation of 3-amino-5-methylisoxazole: a by-product from biological breakdown of some pharmaceutical compounds.
    Souza BM; Marinho BA; Moreira FC; Dezotti MWC; Boaventura RAR; Vilar VJP
    Environ Sci Pollut Res Int; 2017 Mar; 24(7):6195-6204. PubMed ID: 26555882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractional iron solubility of aerosol particles enhanced by biomass burning and ship emission in Shanghai, East China.
    Fu HB; Shang GF; Lin J; Hu YJ; Hu QQ; Guo L; Zhang YC; Chen JM
    Sci Total Environ; 2014 May; 481():377-91. PubMed ID: 24607631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.