BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 23883394)

  • 1. The (•)OH radical yield in the H2O2 + O3 (peroxone) reaction.
    Fischbacher A; von Sonntag J; von Sonntag C; Schmidt TC
    Environ Sci Technol; 2013 Sep; 47(17):9959-64. PubMed ID: 23883394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced oxidation processes: mechanistic aspects.
    von Sonntag C
    Water Sci Technol; 2008; 58(5):1015-21. PubMed ID: 18824799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2.
    Katsoyiannis IA; Canonica S; von Gunten U
    Water Res; 2011 Jul; 45(13):3811-22. PubMed ID: 21645916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the efficiency of *OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2.
    Rosenfeldt EJ; Linden KG; Canonica S; von Gunten U
    Water Res; 2006 Dec; 40(20):3695-704. PubMed ID: 17078993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The competition between cathodic oxygen and ozone reduction and its role in dictating the reaction mechanisms of an electro-peroxone process.
    Xia G; Wang Y; Wang B; Huang J; Deng S; Yu G
    Water Res; 2017 Jul; 118():26-38. PubMed ID: 28412550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process.
    Yang Y; Jiang J; Lu X; Ma J; Liu Y
    Environ Sci Technol; 2015 Jun; 49(12):7330-9. PubMed ID: 25988821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and energy efficiency for the degradation of 1,4-dioxane by electro-peroxone process.
    Wang H; Bakheet B; Yuan S; Li X; Yu G; Murayama S; Wang Y
    J Hazard Mater; 2015 Aug; 294():90-8. PubMed ID: 25863024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction of ozone with hydrogen peroxide (peroxone process): a revision of current mechanistic concepts based on thermokinetic and quantum-chemical considerations.
    Merényi G; Lind J; Naumov S; Sonntag Cv
    Environ Sci Technol; 2010 May; 44(9):3505-7. PubMed ID: 20392084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intensification of volatile organic compounds mass transfer in a compact scrubber using the O3/H2O2 advanced oxidation process: kinetic study and hydroxyl radical tracking.
    Biard PF; Couvert A; Renner C; Levasseur JP
    Chemosphere; 2011 Nov; 85(7):1122-9. PubMed ID: 21880350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen isotope effects and mechanism of aqueous ozone and peroxone decompositions.
    Lesko TM; Colussi AJ; Hoffmann MR
    J Am Chem Soc; 2004 Apr; 126(13):4432-6. PubMed ID: 15053633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electro-peroxone treatment of the antidepressant venlafaxine: Operational parameters and mechanism.
    Li X; Wang Y; Zhao J; Wang H; Wang B; Huang J; Deng S; Yu G
    J Hazard Mater; 2015 Dec; 300():298-306. PubMed ID: 26188873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of ozone-refractory organic phosphates in wastewater by ozone and ozone/hydrogen peroxide (peroxone): the role of ozone consumption by dissolved organic matter.
    Pocostales JP; Sein MM; Knolle W; von Sonntag C; Schmidt TC
    Environ Sci Technol; 2010 Nov; 44(21):8248-53. PubMed ID: 20929262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the propagation reactions on the hydroxyl radical formation in ozonation and peroxone (ozone/hydrogen peroxide) processes.
    Liu Y; Jiang J; Ma J; Yang Y; Luo C; Huangfu X; Guo Z
    Water Res; 2015 Jan; 68():750-8. PubMed ID: 25462779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of advanced oxidation processes in flow-through pilot plants (part I).
    Muller JP; Jekel M
    Water Sci Technol; 2001; 44(5):303-9. PubMed ID: 11695474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.
    Levanov AV; Isaykina OY; Amirova NK; Antipenko EE; Lunin VV
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):16554-69. PubMed ID: 26077317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the UV/chlorine process as an advanced oxidation process.
    Jin J; El-Din MG; Bolton JR
    Water Res; 2011 Feb; 45(4):1890-6. PubMed ID: 21211812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyl radical formation during ozonation of multiwalled carbon nanotubes: performance optimization and demonstration of a reactive CNT filter.
    Oulton R; Haase JP; Kaalberg S; Redmond CT; Nalbandian MJ; Cwiertny DM
    Environ Sci Technol; 2015 Mar; 49(6):3687-97. PubMed ID: 25730285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Efficiency of atrazine degradation by O3/H2O2].
    Li SF; Liang Y; Zhang RQ; Ye F
    Huan Jing Ke Xue; 2009 May; 30(5):1425-9. PubMed ID: 19558113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulse laser photolysis of aqueous ozone in the microsecond range studied by time-resolved far-ultraviolet absorption spectroscopy.
    Goto T; Morisawa Y; Higashi N; Ikehata A; Ozaki Y
    Anal Chem; 2013 May; 85(9):4500-6. PubMed ID: 23560681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency of activated carbon to transform ozone into *OH radicals: influence of operational parameters.
    Sánchez-Polo M; von Gunten U; Rivera-Utrilla J
    Water Res; 2005 Sep; 39(14):3189-98. PubMed ID: 16005933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.