BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 23883395)

  • 1. Increased river alkalinization in the Eastern U.S.
    Kaushal SS; Likens GE; Utz RM; Pace ML; Grese M; Yepsen M
    Environ Sci Technol; 2013 Sep; 47(18):10302-11. PubMed ID: 23883395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freshwater salinization syndrome on a continental scale.
    Kaushal SS; Likens GE; Pace ML; Utz RM; Haq S; Gorman J; Grese M
    Proc Natl Acad Sci U S A; 2018 Jan; 115(4):E574-E583. PubMed ID: 29311318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term trends in alkalinity in large rivers of the conterminous US in relation to acidification, agriculture, and hydrologic modification.
    Stets EG; Kelly VJ; Crawford CG
    Sci Total Environ; 2014 Aug; 488-489():280-9. PubMed ID: 24836138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human and natural impacts on the U.S. freshwater salinization and alkalinization: A machine learning approach.
    E B; Zhang S; Driscoll CT; Wen T
    Sci Total Environ; 2023 Sep; 889():164138. PubMed ID: 37182763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term trends and variation of acidity, COD(Mn) and colour in coastal rivers of Western Finland in relation to climate and hydrology.
    Saarinen T; Vuori KM; Alasaarela E; Kløve B
    Sci Total Environ; 2010 Oct; 408(21):5019-27. PubMed ID: 20705330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical weathering inferred from riverine water chemistry in the lower Xijiang basin, South China.
    Sun H; Han J; Li D; Zhang S; Lu X
    Sci Total Environ; 2010 Sep; 408(20):4749-60. PubMed ID: 20624634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term trends in Swiss rivers sampled continuously over 39 years reflect changes in geochemical processes and pollution.
    Zobrist J; Schoenenberger U; Figura S; Hug SJ
    Environ Sci Pollut Res Int; 2018 Jun; 25(17):16788-16809. PubMed ID: 29616474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydro-Geochemistry of the River Water in the Jiulongjiang River Basin, Southeast China: Implications of Anthropogenic Inputs and Chemical Weathering.
    Li X; Han G; Liu M; Yang K; Liu J
    Int J Environ Res Public Health; 2019 Feb; 16(3):. PubMed ID: 30717400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfur and strontium isotope geochemistry of tributary rivers of Lake Biwa: implications for human impact on the decadal change of lake water quality.
    Nakano T; Tayasu I; Wada E; Igeta A; Hyodo F; Miura Y
    Sci Total Environ; 2005 Jun; 345(1-3):1-12. PubMed ID: 15919522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow-specific trends in river-water quality resulting from the effects of the Clean Air Act in three mesoscale, forested river basins in the northeastern United States through 2002.
    Murdoch PS; Shanley JB
    Environ Monit Assess; 2006 Sep; 120(1-3):1-25. PubMed ID: 16897528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increase in the export of alkalinity from North America's largest river.
    Raymond PA; Cole JJ
    Science; 2003 Jul; 301(5629):88-91. PubMed ID: 12843391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Population growth away from the coastal zone: thirty years of land use change and nutrient export in the Altamaha River, GA.
    Weston NB; Hollibaugh JT; Joye SB
    Sci Total Environ; 2009 May; 407(10):3347-56. PubMed ID: 19246074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical weathering and CO₂ consumption in the Lower Mekong River.
    Li S; Lu XX; Bush RT
    Sci Total Environ; 2014 Feb; 472():162-77. PubMed ID: 24291559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 238U series isotopes and 232Th in carbonates and black shales from the Lesser Himalaya: implications to dissolved uranium abundances in Ganga-Indus source waters.
    Singh SK; Dalai TK; Krishnaswami S
    J Environ Radioact; 2003; 67(1):69-90. PubMed ID: 12634002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Geochemistry of surface and ground water in the Lijang basin, Northwest Yunnan].
    Pu T; He YQ; Zhu GF; Zhang W; Cao WH; Chang L; Wang CF
    Huan Jing Ke Xue; 2012 Jan; 33(1):48-54. PubMed ID: 22452188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrochemistry of inland rivers in the north Tibetan Plateau: Constraints and weathering rate estimation.
    Wu W
    Sci Total Environ; 2016 Jan; 541():468-482. PubMed ID: 26410721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River.
    Raymond PA; Oh NH; Turner RE; Broussard W
    Nature; 2008 Jan; 451(7177):449-52. PubMed ID: 18216851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A linked spatial and temporal model of the chemical and biological status of a large, acid-sensitive river network.
    Evans CD; Cooper DM; Juggins S; Jenkins A; Norris D
    Sci Total Environ; 2006 Jul; 365(1-3):167-85. PubMed ID: 16580046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Major ion chemistry and dissolved inorganic carbon cycling in a human-disturbed mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River), China.
    Zhang S; Lu XX; Sun H; Han J; Higgitt DL
    Sci Total Environ; 2009 Apr; 407(8):2796-807. PubMed ID: 19185905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Groundtruthing and potential for predicting acid deposition impacts in headwater streams using bedrock geology, GIS, angling, and stream chemistry.
    Kirby CS; McInerney B; Turner MD
    Sci Total Environ; 2008 Apr; 393(2-3):249-61. PubMed ID: 18258282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.