These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 23883693)
21. Relationship between submaximal oxygen uptake, detailed body composition, and resting energy expenditure in overweight subjects. Pourhassan M; Eggeling B; Schautz B; Johannsen M; Kiosz D; Glüer CC; Bosy-Westphal A; Müller MJ Am J Hum Biol; 2015; 27(3):397-406. PubMed ID: 25430076 [TBL] [Abstract][Full Text] [Related]
22. Prediction of daily energy expenditure during a feeding trial using measurements of resting energy expenditure, fat-free mass, or Harris-Benedict equations. Kien CL; Ugrasbul F Am J Clin Nutr; 2004 Oct; 80(4):876-80. PubMed ID: 15447893 [TBL] [Abstract][Full Text] [Related]
23. Metabolically active components of fat free mass and resting energy expenditure in nonobese adults. Illner K; Brinkmann G; Heller M; Bosy-Westphal A; Müller MJ Am J Physiol Endocrinol Metab; 2000 Feb; 278(2):E308-15. PubMed ID: 10662716 [TBL] [Abstract][Full Text] [Related]
24. Influence of fat-free mass and functional status on resting energy expenditure in underweight elders. Sergi G; Coin A; Bussolotto M; Benincà P; Tomasi G; Pisent C; Peruzza S; Inelmen EM; Enzi G J Gerontol A Biol Sci Med Sci; 2002 May; 57(5):M302-7. PubMed ID: 11983724 [TBL] [Abstract][Full Text] [Related]
25. Organ size increases with weight gain in power-trained athletes. Miyauchi S; Oshima S; Asaka M; Kawano H; Torii S; Higuchi M Int J Sport Nutr Exerc Metab; 2013 Dec; 23(6):617-23. PubMed ID: 23799654 [TBL] [Abstract][Full Text] [Related]
26. Determinants of resting energy expenditure in obese and non-obese children and adolescents. Rodríguez G; Moreno LA; Sarría A; Pineda I; Fleta J; Pérez-González JM; Bueno M J Physiol Biochem; 2002 Mar; 58(1):9-15. PubMed ID: 12222749 [TBL] [Abstract][Full Text] [Related]
27. Effects of adiposity and body composition on adjusted resting energy expenditure in women. Gould LM; Hirsch KR; Blue MNM; Cabre HE; Brewer GJ; Smith-Ryan AE Am J Hum Biol; 2022 Feb; 34(2):e23610. PubMed ID: 33961322 [TBL] [Abstract][Full Text] [Related]
28. Prediction of resting energy expenditure from fat-free mass and fat mass. Nelson KM; Weinsier RL; Long CL; Schutz Y Am J Clin Nutr; 1992 Nov; 56(5):848-56. PubMed ID: 1415003 [TBL] [Abstract][Full Text] [Related]
29. Total and Segmental Body Composition Examination in Collegiate Football Players Using Multifrequency Bioelectrical Impedance Analysis and Dual X-ray Absorptiometry. Raymond CJ; Dengel DR; Bosch TA J Strength Cond Res; 2018 Mar; 32(3):772-782. PubMed ID: 29120982 [TBL] [Abstract][Full Text] [Related]
30. Resting energy expenditure prediction in recreational athletes of 18-35 years: confirmation of Cunningham equation and an improved weight-based alternative. ten Haaf T; Weijs PJ PLoS One; 2014; 9(9):e108460. PubMed ID: 25275434 [TBL] [Abstract][Full Text] [Related]
31. Resting energy expenditure (REE) in six- to seventeen-year-old Japanese children and adolescents. Kaneko K; Ito C; Koizumi K; Watanabe S; Umeda Y; Ishikawa-Takata K J Nutr Sci Vitaminol (Tokyo); 2013; 59(4):299-309. PubMed ID: 24064730 [TBL] [Abstract][Full Text] [Related]
32. A viscerally driven cachexia syndrome in patients with advanced colorectal cancer: contributions of organ and tumor mass to whole-body energy demands. Lieffers JR; Mourtzakis M; Hall KD; McCargar LJ; Prado CM; Baracos VE Am J Clin Nutr; 2009 Apr; 89(4):1173-9. PubMed ID: 19244378 [TBL] [Abstract][Full Text] [Related]
33. Resting energy expenditure and adiposity accretion among children with Down syndrome: a 3-year prospective study. Hill DL; Parks EP; Zemel BS; Shults J; Stallings VA; Stettler N Eur J Clin Nutr; 2013 Oct; 67(10):1087-91. PubMed ID: 23900244 [TBL] [Abstract][Full Text] [Related]
34. Ability to predict resting energy expenditure with six equations compared to indirect calorimetry in octogenarian men. Karlsson M; Olsson E; Becker W; Karlström B; Cederholm T; Sjögren P Exp Gerontol; 2017 Jun; 92():52-55. PubMed ID: 28323025 [TBL] [Abstract][Full Text] [Related]
35. Larger mass of high-metabolic-rate organs does not explain higher resting energy expenditure in children. Hsu A; Heshka S; Janumala I; Song MY; Horlick M; Krasnow N; Gallagher D Am J Clin Nutr; 2003 Jun; 77(6):1506-11. PubMed ID: 12791631 [TBL] [Abstract][Full Text] [Related]
36. Anthropometric measured fat-free mass as essential determinant of resting energy expenditure for pregnant and non-pregnant women. Hronek M; Klemera P; Tosner J; Hrnciarikova D; Zadak Z Nutrition; 2011 Sep; 27(9):885-90. PubMed ID: 21167686 [TBL] [Abstract][Full Text] [Related]
37. Gender-Specific Associations in Age-Related Changes in Resting Energy Expenditure (REE) and MRI Measured Body Composition in Healthy Caucasians. Geisler C; Braun W; Pourhassan M; Schweitzer L; Glüer CC; Bosy-Westphal A; Müller MJ J Gerontol A Biol Sci Med Sci; 2016 Jul; 71(7):941-6. PubMed ID: 26590912 [TBL] [Abstract][Full Text] [Related]
38. Factors related to increased resting energy expenditure in men with liver cirrhosis. Prieto-Frías C; Conchillo M; Payeras M; Iñarrairaegui M; Davola D; Frühbeck G; Salvador J; Rodríguez M; Richter JÁ; Mugueta C; Gil MJ; Herrero I; Prieto J; Sangro B; Quiroga J Eur J Gastroenterol Hepatol; 2016 Feb; 28(2):139-45. PubMed ID: 26560751 [TBL] [Abstract][Full Text] [Related]
39. Determinants of resting energy expenditure in young children. Goran MI; Kaskoun M; Johnson R J Pediatr; 1994 Sep; 125(3):362-7. PubMed ID: 8071742 [TBL] [Abstract][Full Text] [Related]
40. Contribution of structural brain phenotypes to the variance in resting energy expenditure in healthy Caucasian subjects. Geisler C; Hübers M; Granert O; Müller MJ J Appl Physiol (1985); 2018 Aug; 125(2):320-327. PubMed ID: 28935829 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]