These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 23884183)

  • 21. Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf.
    Latthe SS; Terashima C; Nakata K; Fujishima A
    Molecules; 2014 Apr; 19(4):4256-83. PubMed ID: 24714190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of bio-inspired hierarchical structures in wetting.
    Grewal HS; Cho IJ; Yoon ES
    Bioinspir Biomim; 2015 Apr; 10(2):026009. PubMed ID: 25856043
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comprehensive review on anticorrosive/antifouling superhydrophobic coatings: Fabrication, assessment, applications, challenges and future perspectives.
    Rasitha TP; Krishna NG; Anandkumar B; Vanithakumari SC; Philip J
    Adv Colloid Interface Sci; 2024 Feb; 324():103090. PubMed ID: 38290251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Review of Recent Advances in Superhydrophobic Surfaces and Their Applications in Drag Reduction and Heat Transfer.
    Zhang Y; Zhang Z; Yang J; Yue Y; Zhang H
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35009994
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Wet self-cleaning of superhydrophobic microfiber adhesives formed from high density polyethylene.
    Lee J; Fearing RS
    Langmuir; 2012 Oct; 28(43):15372-7. PubMed ID: 23072291
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shark skin inspired low-drag microstructured surfaces in closed channel flow.
    Bixler GD; Bhushan B
    J Colloid Interface Sci; 2013 Mar; 393():384-96. PubMed ID: 23266029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring the Role of Habitat on the Wettability of Cicada Wings.
    Oh J; Dana CE; Hong S; Román JK; Jo KD; Hong JW; Nguyen J; Cropek DM; Alleyne M; Miljkovic N
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):27173-27184. PubMed ID: 28719187
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials.
    Koch K; Barthlott W
    Philos Trans A Math Phys Eng Sci; 2009 Apr; 367(1893):1487-509. PubMed ID: 19324720
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hierarchically sculptured plant surfaces and superhydrophobicity.
    Koch K; Bohn HF; Barthlott W
    Langmuir; 2009 Dec; 25(24):14116-20. PubMed ID: 19634871
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Butterfly effects: novel functional materials inspired from the wings scales.
    Zhang W; Gu J; Liu Q; Su H; Fan T; Zhang D
    Phys Chem Chem Phys; 2014 Oct; 16(37):19767-80. PubMed ID: 25087928
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insect Analogue to the Lotus Leaf: A Planthopper Wing Membrane Incorporating a Low-Adhesion, Nonwetting, Superhydrophobic, Bactericidal, and Biocompatible Surface.
    Watson GS; Green DW; Cribb BW; Brown CL; Meritt CR; Tobin MJ; Vongsvivut J; Sun M; Liang AP; Watson JA
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24381-24392. PubMed ID: 28640578
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mimicking the rice leaf--from ordered binary structures to anisotropic wettability.
    Zhu D; Li X; Zhang G; Zhang X; Zhang X; Wang T; Yang B
    Langmuir; 2010 Sep; 26(17):14276-83. PubMed ID: 20677764
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Superhydrophobic Plant Leaves: The Variation in Surface Morphologies and Wettability during the Vegetation Period.
    Gou X; Guo Z
    Langmuir; 2019 Jan; 35(4):1047-1053. PubMed ID: 30621395
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioinspired surfaces with wettability for antifouling application.
    Li Z; Guo Z
    Nanoscale; 2019 Dec; 11(47):22636-22663. PubMed ID: 31755511
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lotus leaf-like dual-scale silver film applied as a superhydrophobic and self-cleaning substrate.
    Wu Y; Hang T; Yu Z; Xu L; Li M
    Chem Commun (Camb); 2014 Aug; 50(61):8405-7. PubMed ID: 24946911
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From natural to biomimetic: The superhydrophobicity and the contact time.
    Liang YH; Peng J; Li XJ; Xu JK; Zhang ZH; Ren LQ
    Microsc Res Tech; 2016 Aug; 79(8):712-20. PubMed ID: 27252147
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Water-Repellent Properties of Superhydrophobic and Lubricant-Infused "Slippery" Surfaces: A Brief Study on the Functions and Applications.
    Cao M; Guo D; Yu C; Li K; Liu M; Jiang L
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3615-23. PubMed ID: 26447551
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nature inspired structured surfaces for biomedical applications.
    Webb HK; Hasan J; Truong VK; Crawford RJ; Ivanova EP
    Curr Med Chem; 2011; 18(22):3367-75. PubMed ID: 21728964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Water repellent/wetting characteristics of various bio-inspired morphologies and fluid drag reduction testing research.
    Luo Y; Song W; Wang X
    Micron; 2016 Mar; 82():9-16. PubMed ID: 26760225
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural color films with lotus effects, superhydrophilicity, and tunable stop-bands.
    Sato O; Kubo S; Gu ZZ
    Acc Chem Res; 2009 Jan; 42(1):1-10. PubMed ID: 18837520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.