BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23884325)

  • 1. Tuning activity-based probe selectivity for serine proteases by on-resin 'click' construction of peptide diphenyl phosphonates.
    Serim S; Mayer SV; Verhelst SH
    Org Biomol Chem; 2013 Sep; 11(34):5714-21. PubMed ID: 23884325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alkyne derivatives of isocoumarins as clickable activity-based probes for serine proteases.
    Haedke U; Götz M; Baer P; Verhelst SH
    Bioorg Med Chem; 2012 Jan; 20(2):633-40. PubMed ID: 21454080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of biotinylated diphenyl phosphonates for disclosure of serine proteases.
    Hawthorne S; Hamilton R; Walker BJ; Walker B
    Anal Biochem; 2004 Mar; 326(2):273-5. PubMed ID: 15003568
    [No Abstract]   [Full Text] [Related]  

  • 4. Synthesis and kinetic studies of diphenyl 1-(N-peptidylamino)alkanephosphonate esters and their biotinylated derivatives as inhibitors of serine proteases and probes for lymphocyte granzymes.
    Abuelyaman AS; Jackson DS; Hudig D; Woodard SL; Powers JC
    Arch Biochem Biophys; 1997 Aug; 344(2):271-80. PubMed ID: 9264539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfonyl fluoride analogues as activity-based probes for serine proteases.
    Shannon DA; Gu C; McLaughlin CJ; Kaiser M; van der Hoorn RA; Weerapana E
    Chembiochem; 2012 Nov; 13(16):2327-30. PubMed ID: 23008217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. alpha-Aminoalkylphosphonate di(chlorophenyl) esters as inhibitors of serine proteases.
    Boduszek B; Brown AD; Powers JC
    J Enzyme Inhib; 1994; 8(3):147-58. PubMed ID: 7539484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and evaluation of tripeptidic plasmin inhibitors with nitrile as warhead.
    Teno N; Otsubo T; Gohda K; Wanaka K; Sueda T; Ikeda K; Hijikata-Okunomiya A; Tsuda Y
    J Pept Sci; 2012 Oct; 18(10):620-5. PubMed ID: 22961872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailored Ahp-cyclodepsipeptides as Potent Non-covalent Serine Protease Inhibitors.
    Köcher S; Rey J; Bongard J; Tiaden AN; Meltzer M; Richards PJ; Ehrmann M; Kaiser M
    Angew Chem Int Ed Engl; 2017 Jul; 56(29):8555-8558. PubMed ID: 28514117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expedited solid-phase synthesis of fluorescently labeled and biotinylated aminoalkane diphenyl phosphonate affinity probes for chymotrypsin- and elastase-like serine proteases.
    Gilmore BF; Quinn DJ; Duff T; Cathcart GR; Scott CJ; Walker B
    Bioconjug Chem; 2009 Nov; 20(11):2098-105. PubMed ID: 19810697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptidyl beta-homo-aspartals (3-amino-4-carboxybutyraldehydes): new specific inhibitors of caspases.
    Bajusz S; Fauszt I; Németh K; Barabás E; Juhász A; Patthy M; Bauer PI
    Biopolymers; 1999; 51(1):109-18. PubMed ID: 10380358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Bisbenzamidine Phosphonate as a Janus-faced Inhibitor for Trypsin-like Serine Proteases.
    Häußler D; Scheidt T; Stirnberg M; Steinmetzer T; Gütschow M
    ChemMedChem; 2015 Oct; 10(10):1641-6. PubMed ID: 26306030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoramidates as novel activity-based probes for serine proteases.
    Haedke UR; Frommel SC; Hansen F; Hahne H; Kuster B; Bogyo M; Verhelst SH
    Chembiochem; 2014 May; 15(8):1106-10. PubMed ID: 24817682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. α-Amino-α'-halomethylketones: synthetic methodologies and pharmaceutical applications as serine and cysteine protease inhibitors.
    Pace V; Castoldi L; Pregnolato M
    Mini Rev Med Chem; 2013 Jun; 13(7):988-96. PubMed ID: 22931530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The synthesis of azapeptidomimetic beta-lactam molecules as potential protease inhibitors.
    Malachowski WP; Tie C; Wang K; Broadrup RL
    J Org Chem; 2002 Dec; 67(25):8962-9. PubMed ID: 12467415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ahp cyclodepsipeptides: the impact of the Ahp residue on the "canonical inhibition" of S1 serine proteases.
    Stolze SC; Meltzer M; Ehrmann M; Kaiser M
    Chembiochem; 2013 Jul; 14(11):1301-8. PubMed ID: 23794257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applying small molecule microarrays and resulting affinity probe cocktails for proteome profiling of mammalian cell lysates.
    Shi H; Uttamchandani M; Yao SQ
    Chem Asian J; 2011 Oct; 6(10):2803-15. PubMed ID: 21898842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for Tuning the Selectivity of Chemical Probes that Target Serine Hydrolases.
    Faucher F; Bennett JM; Bogyo M; Lovell S
    Cell Chem Biol; 2020 Aug; 27(8):937-952. PubMed ID: 32726586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel diphenyl esters of peptidyl alpha-aminoalkylphosphonates as inhibitors of chymotrypsin and subtilisin.
    Pietrusewicz E; Sieńczyk M; Oleksyszyn J
    J Enzyme Inhib Med Chem; 2009 Dec; 24(6):1229-36. PubMed ID: 19912056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New cyanopeptide-derived low molecular weight inhibitors of trypsin-like serine proteases.
    Radau G; Schermuly S; Fritsche A
    Arch Pharm (Weinheim); 2003 Aug; 336(6-7):300-9. PubMed ID: 12953218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphonic pseudopeptides as human neutrophil elastase inhibitors--a combinatorial approach.
    Sieńczyk M; Podgórski D; Błażejewska A; Kulbacka J; Saczko J; Oleksyszyn J
    Bioorg Med Chem; 2011 Feb; 19(3):1277-84. PubMed ID: 21216608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.