These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23884608)

  • 41. High-depth fluorescence imaging using a two-photon FRET system for mitochondrial pH in live cells and tissues.
    Chang MJ; Kim K; Park KS; Kang JS; Lim CS; Kim HM; Kang C; Lee MH
    Chem Commun (Camb); 2018 Dec; 54(96):13531-13534. PubMed ID: 30431633
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DNA-Functionalized Dye-Loaded Polymeric Nanoparticles: Ultrabright FRET Platform for Amplified Detection of Nucleic Acids.
    Melnychuk N; Klymchenko AS
    J Am Chem Soc; 2018 Aug; 140(34):10856-10865. PubMed ID: 30067022
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rise-time of FRET-acceptor fluorescence tracks protein folding.
    Lindhoud S; Westphal AH; van Mierlo CP; Visser AJ; Borst JW
    Int J Mol Sci; 2014 Dec; 15(12):23836-50. PubMed ID: 25535076
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Assessing protein-surface interactions with a series of multi-labeled BSA using fluorescence lifetime microscopy and Förster Energy Resonance Transfer.
    Togashi DM; Ryder AG
    Biophys Chem; 2010 Nov; 152(1-3):55-64. PubMed ID: 20724058
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Accurate single-pair Förster resonant energy transfer through combination of pulsed interleaved excitation, time correlated single-photon counting, and fluorescence correlation spectroscopy.
    Rüttinger S; Macdonald R; Krämer B; Koberling F; Roos M; Hildt E
    J Biomed Opt; 2006; 11(2):024012. PubMed ID: 16674202
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fluorescence resonance energy transfer-based stoichiometry in living cells.
    Hoppe A; Christensen K; Swanson JA
    Biophys J; 2002 Dec; 83(6):3652-64. PubMed ID: 12496132
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Energy and electron transfer in enhanced two-photon-absorbing systems with triplet cores.
    Finikova OS; Troxler T; Senes A; DeGrado WF; Hochstrasser RM; Vinogradov SA
    J Phys Chem A; 2007 Aug; 111(30):6977-90. PubMed ID: 17608457
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Single-molecule quantum-dot fluorescence resonance energy transfer.
    Hohng S; Ha T
    Chemphyschem; 2005 May; 6(5):956-60. PubMed ID: 15884082
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations.
    Sapsford KE; Berti L; Medintz IL
    Angew Chem Int Ed Engl; 2006 Jul; 45(28):4562-89. PubMed ID: 16819760
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photobleaching-based quantitative analysis of fluorescence resonance energy transfer inside single living cell.
    Wang L; Chen T; Qu J; Wei X
    J Fluoresc; 2010 Jan; 20(1):27-35. PubMed ID: 19588234
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Photophysics of backbone fluorescent DNA modifications: reducing uncertainties in FRET.
    Ranjit S; Gurunathan K; Levitus M
    J Phys Chem B; 2009 Jun; 113(22):7861-6. PubMed ID: 19473039
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Förster resonance energy transfer beyond 10 nm: exploiting the triplet state kinetics of organic fluorophores.
    Hevekerl H; Spielmann T; Chmyrov A; Widengren J
    J Phys Chem B; 2011 Nov; 115(45):13360-70. PubMed ID: 21928769
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Intramolecular distances and dynamics from the combined photon statistics of single-molecule FRET and photoinduced electron transfer.
    Haenni D; Zosel F; Reymond L; Nettels D; Schuler B
    J Phys Chem B; 2013 Oct; 117(42):13015-28. PubMed ID: 23718771
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fluorescence energy transfer-sensitized photobleaching of a fluorescent label as a tool to study donor-acceptor distance distributions and dynamics in protein assemblies: studies of a complex of biotinylated IgM with streptavidin and aggregates of concanavalin A.
    Mekler VM; Averbakh AZ; Sudarikov AB; Kharitonova OV
    J Photochem Photobiol B; 1997 Oct; 40(3):278-87. PubMed ID: 9372617
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Single molecule FRET for the study on structural dynamics of biomolecules.
    Sugawa M; Arai Y; Iwane AH; Ishii Y; Yanagida T
    Biosystems; 2007 Apr; 88(3):243-50. PubMed ID: 17276585
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Single-molecule three-color FRET.
    Hohng S; Joo C; Ha T
    Biophys J; 2004 Aug; 87(2):1328-37. PubMed ID: 15298935
    [TBL] [Abstract][Full Text] [Related]  

  • 58. FRET-based sensor for imaging chromium(III) in living cells.
    Zhou Z; Yu M; Yang H; Huang K; Li F; Yi T; Huang C
    Chem Commun (Camb); 2008 Aug; (29):3387-9. PubMed ID: 18633498
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microspectroscopic Study of Liposome-to-cell Interaction Revealed by Förster Resonance Energy Transfer.
    Yefimova SL; Kurilchenko IY; Tkacheva TN; Kavok NS; Todor IN; Lukianova NY; Chekhun VF; Malyukin YV
    J Fluoresc; 2014 Mar; 24(2):403-9. PubMed ID: 24101211
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Saturated Förster resonance energy transfer microscopy with a stimulated emission depletion beam: a pathway toward single-molecule resolution in far-field bioimaging.
    Deng S; Chen J; Huang Q; Fan C; Cheng Y
    Opt Lett; 2010 Dec; 35(23):3862-4. PubMed ID: 21124546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.