These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. The insulin-like growth factor axis and prostate cancer: lessons from the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Kaplan PJ; Mohan S; Cohen P; Foster BA; Greenberg NM Cancer Res; 1999 May; 59(9):2203-9. PubMed ID: 10232609 [TBL] [Abstract][Full Text] [Related]
23. Androgen-dependent prostate epithelial cell selection by targeting ARR(2)PBneo to the LPB-Tag model of prostate cancer. Wang Y; Kasper S; Yuan J; Jin RJ; Zhang J; Ishii K; Wills ML; Hayward SW; Matusik RJ Lab Invest; 2006 Oct; 86(10):1074-88. PubMed ID: 16894353 [TBL] [Abstract][Full Text] [Related]
24. Regression of mouse prostatic intraepithelial neoplasia by nonsteroidal anti-inflammatory drugs in the transgenic adenocarcinoma mouse prostate model. Narayanan BA; Narayanan NK; Pittman B; Reddy BS Clin Cancer Res; 2004 Nov; 10(22):7727-37. PubMed ID: 15570007 [TBL] [Abstract][Full Text] [Related]
25. A null-mutation in the Znt7 gene accelerates prostate tumor formation in a transgenic adenocarcinoma mouse prostate model. Tepaamorndech S; Huang L; Kirschke CP Cancer Lett; 2011 Sep; 308(1):33-42. PubMed ID: 21621325 [TBL] [Abstract][Full Text] [Related]
26. Dietary tomato and lycopene impact androgen signaling- and carcinogenesis-related gene expression during early TRAMP prostate carcinogenesis. Wan L; Tan HL; Thomas-Ahner JM; Pearl DK; Erdman JW; Moran NE; Clinton SK Cancer Prev Res (Phila); 2014 Dec; 7(12):1228-39. PubMed ID: 25315431 [TBL] [Abstract][Full Text] [Related]
27. Conditional deletion of the Pten gene in the mouse prostate induces prostatic intraepithelial neoplasms at early ages but a slow progression to prostate tumors. Kwak MK; Johnson DT; Zhu C; Lee SH; Ye DW; Luong R; Sun Z PLoS One; 2013; 8(1):e53476. PubMed ID: 23308230 [TBL] [Abstract][Full Text] [Related]
28. 5α-reductase 1 mRNA levels are positively correlated with TRAMP mouse prostate most severe lesion scores. Opoku-Acheampong AB; Henningson JN; Beck AP; Lindshield BL PLoS One; 2017; 12(5):e0175874. PubMed ID: 28493878 [TBL] [Abstract][Full Text] [Related]
29. Efficacious chemoprevention of primary prostate cancer by flutamide in an autochthonous transgenic model. Raghow S; Kuliyev E; Steakley M; Greenberg N; Steiner MS Cancer Res; 2000 Aug; 60(15):4093-7. PubMed ID: 10945615 [TBL] [Abstract][Full Text] [Related]
30. Broadening of transgenic adenocarcinoma of the mouse prostate (TRAMP) model to represent late stage androgen depletion independent cancer. Jeet V; Ow K; Doherty E; Curley B; Russell PJ; Khatri A Prostate; 2008 Apr; 68(5):548-62. PubMed ID: 18247402 [TBL] [Abstract][Full Text] [Related]
31. Epidemiology and molecular biology of early prostatic neoplasia. Sakr WA; Ward C; Grignon DJ; Haas GP Mol Urol; 2000; 4(3):109-13;discussion 115. PubMed ID: 11062364 [TBL] [Abstract][Full Text] [Related]
32. ETV4 promotes late development of prostatic intraepithelial neoplasia and cell proliferation through direct and p53-mediated downregulation of p21. Cosi I; Pellecchia A; De Lorenzo E; Torre E; Sica M; Nesi G; Notaro R; De Angioletti M J Hematol Oncol; 2020 Aug; 13(1):112. PubMed ID: 32791988 [TBL] [Abstract][Full Text] [Related]
33. Bitter melon extract impairs prostate cancer cell-cycle progression and delays prostatic intraepithelial neoplasia in TRAMP model. Ru P; Steele R; Nerurkar PV; Phillips N; Ray RB Cancer Prev Res (Phila); 2011 Dec; 4(12):2122-30. PubMed ID: 21911444 [TBL] [Abstract][Full Text] [Related]
34. Increased expression of MUC18 correlates with the metastatic progression of mouse prostate adenocarcinoma in the TRAMP model. Wu GJ; Fu P; Chiang CF; Huss WJ; Greenberg NM; Wu MW J Urol; 2005 May; 173(5):1778-83. PubMed ID: 15821586 [TBL] [Abstract][Full Text] [Related]
35. High grade prostatic intraepithelial neoplasia does not display loss of heterozygosity at the mutation locus in BRCA2 mutation carriers with aggressive prostate cancer. Willems-Jones A; Kavanagh L; Clouston D; Bolton D; ; Fox S; Thorne H BJU Int; 2012 Dec; 110(11 Pt C):E1181-6. PubMed ID: 23035815 [TBL] [Abstract][Full Text] [Related]
36. Up-regulation of MKK4, MKK6 and MKK7 during prostate cancer progression: an important role for SAPK signalling in prostatic neoplasia. Lotan TL; Lyon M; Huo D; Taxy JB; Brendler C; Foster BA; Stadler W; Rinker-Schaeffer CW J Pathol; 2007 Aug; 212(4):386-94. PubMed ID: 17577251 [TBL] [Abstract][Full Text] [Related]
37. Extra-prostatic transgene-associated neoplastic lesions in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. Berman-Booty LD; Thomas-Ahner JM; Bolon B; Oglesbee MJ; Clinton SK; Kulp SK; Chen CS; La Perle KM Toxicol Pathol; 2015 Feb; 43(2):186-97. PubMed ID: 24742627 [TBL] [Abstract][Full Text] [Related]
38. SOX2 plays a critical role in EGFR-mediated self-renewal of human prostate cancer stem-like cells. Rybak AP; Tang D Cell Signal; 2013 Dec; 25(12):2734-42. PubMed ID: 24036214 [TBL] [Abstract][Full Text] [Related]
39. Mutation of the androgen receptor causes oncogenic transformation of the prostate. Ratliff TL J Urol; 2005 Sep; 174(3):1149. PubMed ID: 16094083 [No Abstract] [Full Text] [Related]
40. Cooperation between Stat3 and Akt signaling leads to prostate tumor development in transgenic mice. Blando JM; Carbajal S; Abel E; Beltran L; Conti C; Fischer S; DiGiovanni J Neoplasia; 2011 Mar; 13(3):254-65. PubMed ID: 21390188 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]