These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23884856)

  • 1. Quality by design: scale-up of freeze-drying cycles in pharmaceutical industry.
    Pisano R; Fissore D; Barresi AA; Rastelli M
    AAPS PharmSciTech; 2013 Sep; 14(3):1137-49. PubMed ID: 23884856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Model-Based Approach for the Development of Freeze-Drying Cycles Using a Small-Scale Freeze-Dryer.
    Massei A; Fissore D
    J Pharm Sci; 2023 Aug; 112(8):2176-2189. PubMed ID: 37211317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation of laboratory and production freeze drying cycles.
    Kuu WY; Hardwick LM; Akers MJ
    Int J Pharm; 2005 Sep; 302(1-2):56-67. PubMed ID: 16099610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quality by design: optimization of a freeze-drying cycle via design space in case of heterogeneous drying behavior and influence of the freezing protocol.
    Pisano R; Fissore D; Barresi AA; Brayard P; Chouvenc P; Woinet B
    Pharm Dev Technol; 2013 Feb; 18(1):280-95. PubMed ID: 23078169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications.
    Pikal MJ; Cardon S; Bhugra C; Jameel F; Rambhatla S; Mascarenhas WJ; Akay HU
    Pharm Dev Technol; 2005; 10(1):17-32. PubMed ID: 15776810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fundamentals of freeze-drying.
    Nail SL; Jiang S; Chongprasert S; Knopp SA
    Pharm Biotechnol; 2002; 14():281-360. PubMed ID: 12189727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat and mass transfer scale-up issues during freeze-drying, III: control and characterization of dryer differences via operational qualification tests.
    Rambhatla S; Tchessalov S; Pikal MJ
    AAPS PharmSciTech; 2006 Apr; 7(2):E39. PubMed ID: 16796357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freeze-drying simulation framework coupling product attributes and equipment capability: toward accelerating process by equipment modifications.
    Ganguly A; Alexeenko AA; Schultz SG; Kim SG
    Eur J Pharm Biopharm; 2013 Oct; 85(2):223-35. PubMed ID: 23748132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishing a Multi-Vial Design Space for the Freeze-Drying Process by Means of Mathematical Modeling of the Primary Drying Stage.
    Pérez R; Alvarez MA; Acosta LL; Terry AM; Labrada A
    J Pharm Sci; 2024 Jun; 113(6):1506-1514. PubMed ID: 38342340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.
    Hottot A; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Freeze-Drying Cycles for Pharmaceutical Products Using a Micro Freeze-Dryer.
    Fissore D; Harguindeguy M; Ramirez DV; Thompson TN
    J Pharm Sci; 2020 Jan; 109(1):797-806. PubMed ID: 31678249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the use of a dual-scale model to improve understanding of a pharmaceutical freeze-drying process.
    Rasetto V; Marchisio DL; Fissore D; Barresi AA
    J Pharm Sci; 2010 Oct; 99(10):4337-50. PubMed ID: 20301092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of soft sensors to monitor a pharmaceuticals freeze-drying process in vials.
    Bosca S; Barresi AA; Fissore D
    Pharm Dev Technol; 2014 Mar; 19(2):148-59. PubMed ID: 23336717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of freeze-drying cycles: The determination of heat transfer coefficient by using heat flux sensor and MicroFD.
    Carfagna M; Rosa M; Hawe A; Frieß W
    Int J Pharm; 2022 Jun; 621():121763. PubMed ID: 35472509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Freeze Dryer Design on Heat Transfer Variability Investigated Using a 3D Mathematical Model.
    Scutellà B; Bourlès E; Plana-Fattori A; Fonseca F; Flick D; Trelea IC; Passot S
    J Pharm Sci; 2018 Aug; 107(8):2098-2106. PubMed ID: 29665380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of manometric temperature measurement (MTM), a process analytical technology tool in freeze drying, part III: heat and mass transfer measurement.
    Tang XC; Nail SL; Pikal MJ
    AAPS PharmSciTech; 2006; 7(4):97. PubMed ID: 17285746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model for heat and mass transfer in freeze-drying of pellets.
    Trelea IC; Passot S; Marin M; Fonseca F
    J Biomech Eng; 2009 Jul; 131(7):074501. PubMed ID: 19640137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freeze-Drying Process Development and Scale-Up: Scale-Up of Edge Vial Versus Center Vial Heat Transfer Coefficients, K
    Pikal MJ; Bogner R; Mudhivarthi V; Sharma P; Sane P
    J Pharm Sci; 2016 Nov; 105(11):3333-3343. PubMed ID: 27666376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro Freeze-Dryer and Infrared-Based PAT: Novel Tools for Primary Drying Design Space Determination of Freeze-Drying Processes.
    Harguindeguy M; Fissore D
    Pharm Res; 2021 Apr; 38(4):707-719. PubMed ID: 33686561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Use of Infrared Thermography for Monitoring a Vial Freeze-Drying Process.
    Lietta E; Colucci D; Distefano G; Fissore D
    J Pharm Sci; 2019 Jan; 108(1):391-398. PubMed ID: 30077699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.