These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 23884944)

  • 1. Differences in adaptation rates after virtual surgeries provide direct evidence for modularity.
    Berger DJ; Gentner R; Edmunds T; Pai DK; d'Avella A
    J Neurosci; 2013 Jul; 33(30):12384-94. PubMed ID: 23884944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modularity for Motor Control and Motor Learning.
    d'Avella A
    Adv Exp Med Biol; 2016; 957():3-19. PubMed ID: 28035557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Task space exploration improves adaptation after incompatible virtual surgeries.
    Berger DJ; Borzelli D; d'Avella A
    J Neurophysiol; 2022 Apr; 127(4):1127-1146. PubMed ID: 35320031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persistent changes in motor adaptation strategies after perturbations that require exploration of novel muscle activation patterns.
    Berger DJ; d'Avella A
    J Neurophysiol; 2023 Nov; 130(5):1194-1199. PubMed ID: 37791384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. When 90% of the variance is not enough: residual EMG from muscle synergy extraction influences task performance.
    Barradas VR; Kutch JJ; Kawase T; Koike Y; Schweighofer N
    J Neurophysiol; 2020 Jun; 123(6):2180-2190. PubMed ID: 32267198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exposure to an incompatible virtual surgery impacts the null space components of the muscle patterns after re-adaptation but not the task performance.
    Berger DJ; d'Avella A
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does the cerebellum shape the spatiotemporal organization of muscle patterns? Insights from subjects with cerebellar ataxias.
    Berger DJ; Masciullo M; Molinari M; Lacquaniti F; d'Avella A
    J Neurophysiol; 2020 May; 123(5):1691-1710. PubMed ID: 32159425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective force control by muscle synergies.
    Berger DJ; d'Avella A
    Front Comput Neurosci; 2014; 8():46. PubMed ID: 24860489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A modular neural model of motor synergies.
    Byadarhaly KV; Perdoor MC; Minai AA
    Neural Netw; 2012 Aug; 32():96-108. PubMed ID: 22394689
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of age-related modifications of upper limb motor control strategies in a new dynamic environment.
    Cesqui B; Macrì G; Dario P; Micera S
    J Neuroeng Rehabil; 2008 Nov; 5():31. PubMed ID: 19019228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superposition and modulation of muscle synergies for reaching in response to a change in target location.
    d'Avella A; Portone A; Lacquaniti F
    J Neurophysiol; 2011 Dec; 106(6):2796-812. PubMed ID: 21880939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of phasic and tonic muscle synergies with reaching direction and speed.
    d'Avella A; Fernandez L; Portone A; Lacquaniti F
    J Neurophysiol; 2008 Sep; 100(3):1433-54. PubMed ID: 18596190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modularity speeds up motor learning by overcoming mechanical bias in musculoskeletal geometry.
    Hagio S; Kouzaki M
    J R Soc Interface; 2018 Oct; 15(147):. PubMed ID: 30305418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impedance control is selectively tuned to multiple directions of movement.
    Kadiallah A; Liaw G; Kawato M; Franklin DW; Burdet E
    J Neurophysiol; 2011 Nov; 106(5):2737-48. PubMed ID: 21849617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inter-individual variability of forces and modular muscle coordination in cycling: a study on untrained subjects.
    De Marchis C; Schmid M; Bibbo D; Bernabucci I; Conforto S
    Hum Mov Sci; 2013 Dec; 32(6):1480-94. PubMed ID: 24060224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of motor modularity on performance, learning and generalizability in upper-extremity reaching: a computational analysis.
    Al Borno M; Hicks JL; Delp SL
    J R Soc Interface; 2020 Jun; 17(167):20200011. PubMed ID: 32486950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstimulation activates a handful of muscle synergies.
    Overduin SA; d'Avella A; Carmena JM; Bizzi E
    Neuron; 2012 Dec; 76(6):1071-7. PubMed ID: 23259944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consistent visuomotor adaptations and generalizations can be achieved through different rotations of robust motor modules.
    De Marchis C; Di Somma J; Zych M; Conforto S; Severini G
    Sci Rep; 2018 Aug; 8(1):12657. PubMed ID: 30140072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time course of changes in the long-latency feedback response parallels the fast process of short-term motor adaptation.
    Coltman SK; Gribble PL
    J Neurophysiol; 2020 Aug; 124(2):388-399. PubMed ID: 32639925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel strategies in feedforward adaptation to a position-dependent perturbation.
    Hinder MR; Milner TE
    Exp Brain Res; 2005 Aug; 165(2):239-49. PubMed ID: 15856204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.