These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 23884952)

  • 21. Visuotopic organisation and neuronal response selectivity for direction of motion in visual areas of the caudal temporal lobe of the marmoset monkey (Callithrix jacchus): middle temporal area, middle temporal crescent, and surrounding cortex.
    Rosa MG; Elston GN
    J Comp Neurol; 1998 Apr; 393(4):505-27. PubMed ID: 9550155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimating receptive field size from fMRI data in human striate and extrastriate visual cortex.
    Smith AT; Singh KD; Williams AL; Greenlee MW
    Cereb Cortex; 2001 Dec; 11(12):1182-90. PubMed ID: 11709489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Retinotopic specializations of cortical and thalamic inputs to area MT.
    Mundinano IC; Kwan WC; Bourne JA
    Proc Natl Acad Sci U S A; 2019 Nov; 116(46):23326-23331. PubMed ID: 31659044
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal.
    Rodman HR; Gross CG; Albright TD
    J Neurosci; 1989 Jun; 9(6):2033-50. PubMed ID: 2723765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extra-classical receptive field effects measured in striate cortex with fMRI.
    Harrison LM; Stephan KE; Rees G; Friston KJ
    Neuroimage; 2007 Feb; 34(3):1199-208. PubMed ID: 17169579
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cortical-like receptive fields in the lateral geniculate nucleus of marmoset monkeys.
    Cheong SK; Tailby C; Solomon SG; Martin PR
    J Neurosci; 2013 Apr; 33(16):6864-76. PubMed ID: 23595745
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direction and orientation selectivity of neurons in visual area MT of the macaque.
    Albright TD
    J Neurophysiol; 1984 Dec; 52(6):1106-30. PubMed ID: 6520628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial specificity and inheritance of adaptation in human visual cortex.
    Larsson J; Harrison SJ
    J Neurophysiol; 2015 Aug; 114(2):1211-26. PubMed ID: 26063774
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantification of early stages of cortical reorganization of the topographic map of V1 following retinal lesions in monkeys.
    Botelho EP; Ceriatte C; Soares JG; Gattass R; Fiorani M
    Cereb Cortex; 2014 Jan; 24(1):1-16. PubMed ID: 23010747
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Receptive Field Properties of Koniocellular On/Off Neurons in the Lateral Geniculate Nucleus of Marmoset Monkeys.
    Eiber CD; Rahman AS; Pietersen ANJ; Zeater N; Dreher B; Solomon SG; Martin PR
    J Neurosci; 2018 Nov; 38(48):10384-10398. PubMed ID: 30327419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and V1.
    Mikami A; Newsome WT; Wurtz RH
    J Neurophysiol; 1986 Jun; 55(6):1328-39. PubMed ID: 3734858
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-dimensional substructure of MT receptive fields.
    Livingstone MS; Pack CC; Born RT
    Neuron; 2001 Jun; 30(3):781-93. PubMed ID: 11430811
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Area map of mouse visual cortex.
    Wang Q; Burkhalter A
    J Comp Neurol; 2007 May; 502(3):339-57. PubMed ID: 17366604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of inter-hemispheric transfer in generating visual evoked potentials in V1-damaged brain hemispheres.
    Kavcic V; Triplett RL; Das A; Martin T; Huxlin KR
    Neuropsychologia; 2015 Feb; 68():82-93. PubMed ID: 25575450
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Receptive fields and functional architecture of macaque V2.
    Levitt JB; Kiper DC; Movshon JA
    J Neurophysiol; 1994 Jun; 71(6):2517-42. PubMed ID: 7931532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Local and Global Correlations between Neurons in the Middle Temporal Area of Primate Visual Cortex.
    Solomon SS; Chen SC; Morley JW; Solomon SG
    Cereb Cortex; 2015 Sep; 25(9):3182-96. PubMed ID: 24904074
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unmasking motion-processing activity in human brain area V5/MT+ mediated by pathways that bypass primary visual cortex.
    Schoenfeld MA; Heinze HJ; Woldorff MG
    Neuroimage; 2002 Oct; 17(2):769-79. PubMed ID: 12377152
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Responsiveness of cat area 17 after monocular inactivation: limitation of topographic plasticity in adult cortex.
    Rosa MG; Schmid LM; Calford MB
    J Physiol; 1995 Feb; 482 ( Pt 3)(Pt 3):589-608. PubMed ID: 7738850
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pattern reversal visual evoked responses of V1/V2 and V5/MT as revealed by MEG combined with probabilistic cytoarchitectonic maps.
    Barnikol UB; Amunts K; Dammers J; Mohlberg H; Fieseler T; Malikovic A; Zilles K; Niedeggen M; Tass PA
    Neuroimage; 2006 May; 31(1):86-108. PubMed ID: 16480895
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visual responses of neurones in the second visual area of flying foxes (Pteropus poliocephalus) after lesions of striate cortex.
    Funk AP; Rosa MG
    J Physiol; 1998 Dec; 513 ( Pt 2)(Pt 2):507-19. PubMed ID: 9806999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.