BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 23885059)

  • 21. Impact of main branch stenting on endothelial shear stress: role of side branch diameter, angle and lesion.
    Chen HY; Moussa ID; Davidson C; Kassab GS
    J R Soc Interface; 2012 Jun; 9(71):1187-93. PubMed ID: 22112654
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wall shear stress gradient analysis within an idealized stenosis using non-Newtonian flow.
    Schirmer CM; Malek AM
    Neurosurgery; 2007 Oct; 61(4):853-63; discussion 863-4. PubMed ID: 17986948
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vascular cell adhesion molecule-1 expression in endothelial cells exposed to physiological coronary wall shear stresses.
    O'Keeffe LM; Muir G; Piterina AV; McGloughlin T
    J Biomech Eng; 2009 Aug; 131(8):081003. PubMed ID: 19604015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitric oxide-dependent stimulation of endothelial cell proliferation by sustained high flow.
    Metaxa E; Meng H; Kaluvala SR; Szymanski MP; Paluch RA; Kolega J
    Am J Physiol Heart Circ Physiol; 2008 Aug; 295(2):H736-42. PubMed ID: 18552158
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Endothelial cell polarization and orientation to flow in a novel microfluidic multimodal shear stress generator.
    Sonmez UM; Cheng YW; Watkins SC; Roman BL; Davidson LA
    Lab Chip; 2020 Nov; 20(23):4373-4390. PubMed ID: 33099594
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study.
    Boussel L; Rayz V; McCulloch C; Martin A; Acevedo-Bolton G; Lawton M; Higashida R; Smith WS; Young WL; Saloner D
    Stroke; 2008 Nov; 39(11):2997-3002. PubMed ID: 18688012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mis-sizing of stent promotes intimal hyperplasia: impact of endothelial shear and intramural stress.
    Chen HY; Sinha AK; Choy JS; Zheng H; Sturek M; Bigelow B; Bhatt DL; Kassab GS
    Am J Physiol Heart Circ Physiol; 2011 Dec; 301(6):H2254-63. PubMed ID: 21926337
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hemodynamic impingement and the initiation of intracranial side-wall aneurysms.
    Riccardello GJ; Changa AR; Al-Mufti F; Singh IP; Gandhi C; Roman M; Prestigiacomo CJ
    Interv Neuroradiol; 2018 Jun; 24(3):288-296. PubMed ID: 29444617
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparison of 4D flow MRI-derived wall shear stress with computational fluid dynamics methods for intracranial aneurysms and carotid bifurcations - A review.
    Szajer J; Ho-Shon K
    Magn Reson Imaging; 2018 May; 48():62-69. PubMed ID: 29223732
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational Fluid Dynamics Analysis to Predict Endothelial Cells Migration During Flow Exposure Experiment With Placement of Two Stent Wires.
    Putra NK; Wang Z; Anzai H; Ohta M
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5454-5457. PubMed ID: 30441571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The biophysical role of hemodynamics in the pathogenesis of cerebral aneurysm formation and rupture.
    Soldozy S; Norat P; Elsarrag M; Chatrath A; Costello JS; Sokolowski JD; Tvrdik P; Kalani MYS; Park MS
    Neurosurg Focus; 2019 Jul; 47(1):E11. PubMed ID: 31261115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wall shear stress distribution inside growing cerebral aneurysm.
    Tanoue T; Tateshima S; Villablanca JP; Viñuela F; Tanishita K
    AJNR Am J Neuroradiol; 2011 Oct; 32(9):1732-7. PubMed ID: 21984256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of Low and High Aneurysmal Wall Shear Stress on Endothelial Cell Behavior: Differences and Similarities.
    Morel S; Schilling S; Diagbouga MR; Delucchi M; Bochaton-Piallat ML; Lemeille S; Hirsch S; Kwak BR
    Front Physiol; 2021; 12():727338. PubMed ID: 34721060
    [No Abstract]   [Full Text] [Related]  

  • 35. Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk.
    Xiang J; Tremmel M; Kolega J; Levy EI; Natarajan SK; Meng H
    J Neurointerv Surg; 2012 Sep; 4(5):351-7. PubMed ID: 21990529
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Non-periodicity of blood flow and its influence on wall shear stress in the carotid artery bifurcation: An in vivo measurement-based computational study.
    Zhou X; Yin L; Xu L; Liang F
    J Biomech; 2020 Mar; 101():109617. PubMed ID: 31959390
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hemodynamics of cerebral aneurysm initiation: the role of wall shear stress and spatial wall shear stress gradient.
    Kulcsár Z; Ugron A; Marosfoi M; Berentei Z; Paál G; Szikora I
    AJNR Am J Neuroradiol; 2011 Mar; 32(3):587-94. PubMed ID: 21310860
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of bifurcation dual stenting on endothelial shear stress.
    Chen HY; Koo BK; Kassab GS
    J Appl Physiol (1985); 2015 Sep; 119(6):627-32. PubMed ID: 26183473
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An In Vitro Hemodynamic Flow System to Study the Effects of Quantified Shear Stresses on Endothelial Cells.
    Avari H; Savory E; Rogers KA
    Cardiovasc Eng Technol; 2016 Mar; 7(1):44-57. PubMed ID: 26621672
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insights into the co-localization of magnitude-based versus direction-based indicators of disturbed shear at the carotid bifurcation.
    Gallo D; Steinman DA; Morbiducci U
    J Biomech; 2016 Aug; 49(12):2413-9. PubMed ID: 26900036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.