These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 23885059)

  • 41. Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery.
    Soulis JV; Giannoglou GD; Chatzizisis YS; Seralidou KV; Parcharidis GE; Louridas GE
    Med Eng Phys; 2008 Jan; 30(1):9-19. PubMed ID: 17412633
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sustained expression of MCP-1 by low wall shear stress loading concomitant with turbulent flow on endothelial cells of intracranial aneurysm.
    Aoki T; Yamamoto K; Fukuda M; Shimogonya Y; Fukuda S; Narumiya S
    Acta Neuropathol Commun; 2016 May; 4(1):48. PubMed ID: 27160403
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hemodynamic and morphological characteristics of a growing cerebral aneurysm.
    Dabagh M; Nair P; Gounley J; Frakes D; Gonzalez LF; Randles A
    Neurosurg Focus; 2019 Jul; 47(1):E13. PubMed ID: 31261117
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Coupling the hemodynamic environment to the evolution of cerebral aneurysms: computational framework and numerical examples.
    Watton PN; Raberger NB; Holzapfel GA; Ventikos Y
    J Biomech Eng; 2009 Oct; 131(10):101003. PubMed ID: 19831473
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Coronary arteries hemodynamics: effect of arterial geometry on hemodynamic parameters causing atherosclerosis.
    Wong KKL; Wu J; Liu G; Huang W; Ghista DN
    Med Biol Eng Comput; 2020 Aug; 58(8):1831-1843. PubMed ID: 32519006
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Interaction between Fluid Wall Shear Stress and Solid Circumferential Strain Affects Endothelial Gene Expression.
    Amaya R; Pierides A; Tarbell JM
    PLoS One; 2015; 10(7):e0129952. PubMed ID: 26147292
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cellular and molecular responses of the basilar terminus to hemodynamics during intracranial aneurysm initiation in a rabbit model.
    Kolega J; Gao L; Mandelbaum M; Mocco J; Siddiqui AH; Natarajan SK; Meng H
    J Vasc Res; 2011; 48(5):429-42. PubMed ID: 21625176
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis.
    Meng H; Tutino VM; Xiang J; Siddiqui A
    AJNR Am J Neuroradiol; 2014 Jul; 35(7):1254-62. PubMed ID: 23598838
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The response of human aortic endothelial cells in a stenotic hemodynamic environment: effect of duration, magnitude, and spatial gradients in wall shear stress.
    Rouleau L; Rossi J; Leask RL
    J Biomech Eng; 2010 Jul; 132(7):071015. PubMed ID: 20590293
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The influence of hemodynamic forces on biomarkers in the walls of elastase-induced aneurysms in rabbits.
    Kadirvel R; Ding YH; Dai D; Zakaria H; Robertson AM; Danielson MA; Lewis DA; Cloft HJ; Kallmes DF
    Neuroradiology; 2007 Dec; 49(12):1041-53. PubMed ID: 17882410
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge.
    Valen-Sendstad K; Bergersen AW; Shimogonya Y; Goubergrits L; Bruening J; Pallares J; Cito S; Piskin S; Pekkan K; Geers AJ; Larrabide I; Rapaka S; Mihalef V; Fu W; Qiao A; Jain K; Roller S; Mardal KA; Kamakoti R; Spirka T; Ashton N; Revell A; Aristokleous N; Houston JG; Tsuji M; Ishida F; Menon PG; Browne LD; Broderick S; Shojima M; Koizumi S; Barbour M; Aliseda A; Morales HG; Lefèvre T; Hodis S; Al-Smadi YM; Tran JS; Marsden AL; Vaippummadhom S; Einstein GA; Brown AG; Debus K; Niizuma K; Rashad S; Sugiyama SI; Owais Khan M; Updegrove AR; Shadden SC; Cornelissen BMW; Majoie CBLM; Berg P; Saalfield S; Kono K; Steinman DA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):544-564. PubMed ID: 30203115
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hemodynamics of Focal Versus Global Growth of Small Cerebral Aneurysms.
    Machi P; Ouared R; Brina O; Bouillot P; Yilmaz H; Vargas MI; Gondar R; Bijlenga P; Lovblad KO; Kulcsár Z
    Clin Neuroradiol; 2019 Jun; 29(2):285-293. PubMed ID: 29209882
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of Different Rotational Directions of BJUT-II VAD on Aortic Swirling Flow Characteristics: A Primary Computational Fluid Dynamics Study.
    Zhang Q; Gao B; Chang Y
    Med Sci Monit; 2016 Jul; 22():2576-88. PubMed ID: 27440399
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The influence of anesthesia and fluid-structure interaction on simulated shear stress patterns in the carotid bifurcation of mice.
    De Wilde D; Trachet B; De Meyer G; Segers P
    J Biomech; 2016 Sep; 49(13):2741-2747. PubMed ID: 27342001
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Flow and wall shear stress characterization after endovascular aneurysm repair and endovascular aneurysm sealing in an infrarenal aneurysm model.
    Boersen JT; Groot Jebbink E; Versluis M; Slump CH; Ku DN; de Vries JPM; Reijnen MMPJ
    J Vasc Surg; 2017 Dec; 66(6):1844-1853. PubMed ID: 28285931
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Peak systolic or maximum intra-aneurysmal hemodynamic condition? Implications on normalized flow variables.
    Morales HG; Bonnefous O
    J Biomech; 2014 Jul; 47(10):2362-70. PubMed ID: 24861633
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow.
    Glor FP; Long Q; Hughes AD; Augst AD; Ariff B; Thom SA; Verdonck PR; Xu XY
    Ann Biomed Eng; 2003 Feb; 31(2):142-51. PubMed ID: 12627821
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Normal patterns of thoracic aortic wall shear stress measured using four-dimensional flow MRI in a large population.
    Callaghan FM; Grieve SM
    Am J Physiol Heart Circ Physiol; 2018 Nov; 315(5):H1174-H1181. PubMed ID: 30028202
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of shear-sensitive genes in the normal rat aorta identifies Hand2 as a major flow-responsive transcription factor.
    Björck HM; Renner J; Maleki S; Nilsson SF; Kihlberg J; Folkersen L; Karlsson M; Ebbers T; Eriksson P; Länne T
    PLoS One; 2012; 7(12):e52227. PubMed ID: 23284944
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Eulerian method to analyze wall shear stress fixed points and manifolds in cardiovascular flows.
    Mazzi V; Gallo D; Calò K; Najafi M; Khan MO; De Nisco G; Steinman DA; Morbiducci U
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1403-1423. PubMed ID: 31865482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.