BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 23885109)

  • 1. Prolactin is not required for the development of severe chronic experimental autoimmune encephalomyelitis.
    Costanza M; Musio S; Abou-Hamdan M; Binart N; Pedotti R
    J Immunol; 2013 Sep; 191(5):2082-8. PubMed ID: 23885109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis.
    Murphy AC; Lalor SJ; Lynch MA; Mills KH
    Brain Behav Immun; 2010 May; 24(4):641-51. PubMed ID: 20138983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of MOG-stimulated Th1 type "light up" (GFP+) CD4+ T cells for the development of experimental autoimmune encephalomyelitis (EAE).
    Yura M; Takahashi I; Serada M; Koshio T; Nakagami K; Yuki Y; Kiyono H
    J Autoimmun; 2001 Aug; 17(1):17-25. PubMed ID: 11488634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prolactin: Friend or Foe in Central Nervous System Autoimmune Inflammation?
    Costanza M; Pedotti R
    Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27918427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmacytoid DC promote priming of autoimmune Th17 cells and EAE.
    Isaksson M; Ardesjö B; Rönnblom L; Kämpe O; Lassmann H; Eloranta ML; Lobell A
    Eur J Immunol; 2009 Oct; 39(10):2925-35. PubMed ID: 19637225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: roles of IL-6 in the activation and differentiation of autoreactive T cells.
    Samoilova EB; Horton JL; Hilliard B; Liu TS; Chen Y
    J Immunol; 1998 Dec; 161(12):6480-6. PubMed ID: 9862671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CD4+ICOS+ T lymphocytes inhibit T cell activation 'in vitro' and attenuate autoimmune encephalitis 'in vivo'.
    Rojo JM; Pini E; Ojeda G; Bello R; Dong C; Flavell RA; Dianzani U; Portolés P
    Int Immunol; 2008 Apr; 20(4):577-89. PubMed ID: 18310064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acceleration of experimental autoimmune encephalomyelitis in interleukin-10-deficient mice: roles of interleukin-10 in disease progression and recovery.
    Samoilova EB; Horton JL; Chen Y
    Cell Immunol; 1998 Sep; 188(2):118-24. PubMed ID: 9756642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unexpected regulatory roles of TLR4 and TLR9 in experimental autoimmune encephalomyelitis.
    Marta M; Andersson A; Isaksson M; Kämpe O; Lobell A
    Eur J Immunol; 2008 Feb; 38(2):565-75. PubMed ID: 18203139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Invariant NKT cells producing IL-4 or IL-10, but not IFN-gamma, inhibit the Th1 response in experimental autoimmune encephalomyelitis, whereas none of these cells inhibits the Th17 response.
    Oh SJ; Chung DH
    J Immunol; 2011 Jun; 186(12):6815-21. PubMed ID: 21572032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tyrosine kinase 2 plays critical roles in the pathogenic CD4 T cell responses for the development of experimental autoimmune encephalomyelitis.
    Oyamada A; Ikebe H; Itsumi M; Saiwai H; Okada S; Shimoda K; Iwakura Y; Nakayama KI; Iwamoto Y; Yoshikai Y; Yamada H
    J Immunol; 2009 Dec; 183(11):7539-46. PubMed ID: 19917699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PPARδ deficient mice develop elevated Th1/Th17 responses and prolonged experimental autoimmune encephalomyelitis.
    Kanakasabai S; Walline CC; Chakraborty S; Bright JJ
    Brain Res; 2011 Feb; 1376():101-12. PubMed ID: 21192919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental autoimmune encephalomyelitis in NF-kappa B-deficient mice:roles of NF-kappa B in the activation and differentiation of autoreactive T cells.
    Hilliard B; Samoilova EB; Liu TS; Rostami A; Chen Y
    J Immunol; 1999 Sep; 163(5):2937-43. PubMed ID: 10453042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The innate immune adaptor MyD88 is dispensable for spontaneous autoimmune demyelination in a mouse model of multiple sclerosis.
    Wexler AG; Frielle C; Berry G; Budgeon LR; Baccon J; Christensen ND; Waldner H
    J Neuroimmunol; 2013 Feb; 255(1-2):60-9. PubMed ID: 23269203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CCR7 ligands are required for development of experimental autoimmune encephalomyelitis through generating IL-23-dependent Th17 cells.
    Kuwabara T; Ishikawa F; Yasuda T; Aritomi K; Nakano H; Tanaka Y; Okada Y; Lipp M; Kakiuchi T
    J Immunol; 2009 Aug; 183(4):2513-21. PubMed ID: 19625643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient and transgenic mice.
    Bettelli E; Das MP; Howard ED; Weiner HL; Sobel RA; Kuchroo VK
    J Immunol; 1998 Oct; 161(7):3299-306. PubMed ID: 9759845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do Th2 cells mediate the effects of glatiramer acetate in experimental autoimmune encephalomyelitis?
    Jee Y; Liu R; Bai XF; Campagnolo DI; Shi FD; Vollmer TL
    Int Immunol; 2006 Apr; 18(4):537-44. PubMed ID: 16481342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-IL-16 therapy reduces CD4+ T-cell infiltration and improves paralysis and histopathology of relapsing EAE.
    Skundric DS; Dai R; Zakarian VL; Bessert D; Skoff RP; Cruikshank WW; Kurjakovic Z
    J Neurosci Res; 2005 Mar; 79(5):680-93. PubMed ID: 15682385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Caspase-1 regulates the inflammatory process leading to autoimmune demyelination.
    Furlan R; Martino G; Galbiati F; Poliani PL; Smiroldo S; Bergami A; Desina G; Comi G; Flavell R; Su MS; Adorini L
    J Immunol; 1999 Sep; 163(5):2403-9. PubMed ID: 10452974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of kinin B1 and B2 receptors in the persistent pain induced by experimental autoimmune encephalomyelitis (EAE) in mice: evidence for the involvement of astrocytes.
    Dutra RC; Bento AF; Leite DF; Manjavachi MN; Marcon R; Bicca MA; Pesquero JB; Calixto JB
    Neurobiol Dis; 2013 Jun; 54():82-93. PubMed ID: 23454198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.