These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 23885351)
1. Development of a novel evaluation method for air particles using surface plasmon resonance spectroscopy analysis. Tanaka R; Gomi R; Funasaka K; Asakawa D; Nakanishi H; Moriwaki H Analyst; 2013 Sep; 138(18):5437-43. PubMed ID: 23885351 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of the Interaction between Pesticides and a Cell Membrane Model by Surface Plasmon Resonance Spectroscopy Analysis. Moriwaki H; Yamada K; Nakanishi H J Agric Food Chem; 2017 Jul; 65(26):5390-5396. PubMed ID: 28602084 [TBL] [Abstract][Full Text] [Related]
3. Measured elemental carbon by thermo-optical transmittance analysis in water-soluble extracts from diesel exhaust, woodsmoke, and ambient particulate samples. Wallén A; Lidén G; Hansson HC J Occup Environ Hyg; 2010 Jan; 7(1):35-45. PubMed ID: 19904658 [TBL] [Abstract][Full Text] [Related]
4. Surface plasmon resonance spectroscopy: a new lead in studying the membrane binding of amyloidogenic transthyretin. Hou X; Small DH; Aguilar MI Methods Mol Biol; 2011; 752():215-28. PubMed ID: 21713640 [TBL] [Abstract][Full Text] [Related]
5. Surface plasmon resonance analysis on interactions of food components with a taste epithelial cell model. Miyano M; Yamashita H; Sakurai T; Nakajima K; Ito K; Misaka T; Ishimaru Y; Abe K; Asakura T J Agric Food Chem; 2010 Nov; 58(22):11870-5. PubMed ID: 21038889 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the surfaces generated by liposome binding to the modified dextran matrix of a surface plasmon resonance sensor chip. Erb EM; Chen X; Allen S; Roberts CJ; Tendler SJ; Davies MC; Forsén S Anal Biochem; 2000 Apr; 280(1):29-35. PubMed ID: 10805517 [TBL] [Abstract][Full Text] [Related]
7. Dissolution behavior of selenium from coal fly ash particles for the development of an acid-washing process. Kashiwakura S; Ohno H; Kumagai Y; Kubo H; Matsubae K; Nagasaka T Chemosphere; 2011 Oct; 85(4):598-602. PubMed ID: 21784503 [TBL] [Abstract][Full Text] [Related]
8. Size-exclusion SPR sensor chip: application to detection of aggregation and disaggregation of biological particles. Terao K; Shimizu K; Miyanishi N; Shimamoto S; Suzuki T; Takao H; Oohira F Analyst; 2012 May; 137(9):2192-8. PubMed ID: 22428153 [TBL] [Abstract][Full Text] [Related]
10. Incorporation of a transmembrane protein into a supported 3D-matrix of liposomes for SPR studies. Granéli A Methods Mol Biol; 2010; 627():237-48. PubMed ID: 20217626 [TBL] [Abstract][Full Text] [Related]
11. Surface plasmon resonance in protein-membrane interactions. Besenicar M; Macek P; Lakey JH; Anderluh G Chem Phys Lipids; 2006 Jun; 141(1-2):169-78. PubMed ID: 16584720 [TBL] [Abstract][Full Text] [Related]
12. Particle characteristics responsible for effects on human lung epithelial cells. Aust AE; Ball JC; Hu AA; Lighty JS; Smith KR; Straccia AM; Veranth JM; Young WC Res Rep Health Eff Inst; 2002 Dec; (110):1-65; discussion 67-76. PubMed ID: 12578113 [TBL] [Abstract][Full Text] [Related]
13. Analysis of immunoarrays using a gold grating-based dual mode surface plasmon-coupled emission (SPCE) sensor chip. Yuk JS; Gibson GN; Rice JM; Guignon EF; Lynes MA Analyst; 2012 Jun; 137(11):2574-81. PubMed ID: 22498719 [TBL] [Abstract][Full Text] [Related]
14. An in vitro assay based on surface plasmon resonance to predict the in vivo circulation kinetics of liposomes. Crielaard BJ; Yousefi A; Schillemans JP; Vermehren C; Buyens K; Braeckmans K; Lammers T; Storm G J Control Release; 2011 Dec; 156(3):307-14. PubMed ID: 21803084 [TBL] [Abstract][Full Text] [Related]
15. Removal of arsenic in coal fly ash by acid washing process using dilute H2SO4 solvent. Kashiwakura S; Ohno H; Matsubae-Yokoyama K; Kumagai Y; Kubo H; Nagasaka T J Hazard Mater; 2010 Sep; 181(1-3):419-25. PubMed ID: 20570439 [TBL] [Abstract][Full Text] [Related]
16. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Papo N; Shai Y Biochemistry; 2003 Jan; 42(2):458-66. PubMed ID: 12525173 [TBL] [Abstract][Full Text] [Related]
17. Continuous flow immunosensor for highly selective and real-time detection of sub-ppb levels of 2-hydroxybiphenyl by using surface plasmon resonance imaging. Gobi KV; Tanaka H; Shoyama Y; Miura N Biosens Bioelectron; 2004 Sep; 20(2):350-7. PubMed ID: 15308241 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical surface plasmon resonance detection of enzymatic reaction in bilayer lipid membranes. Wang J; Wang F; Chen H; Liu X; Dong S Talanta; 2008 May; 75(3):666-70. PubMed ID: 18585129 [TBL] [Abstract][Full Text] [Related]
19. Effects of concentrated ambient particles and diesel engine exhaust on allergic airway disease in Brown Norway rats. Harkema JR; Wagner JG; Kaminski NE; Morishita M; Keeler GJ; McDonald JD; Barrett EG; Res Rep Health Eff Inst; 2009 Nov; (145):5-55. PubMed ID: 20198910 [TBL] [Abstract][Full Text] [Related]
20. Measuring adsorption of a hydrophobic probe with a surface plasmon resonance sensor to monitor conformational changes in immobilized proteins. Yamaguchi S; Mannen T; Zako T; Kamiya N; Nagamune T Biotechnol Prog; 2003; 19(4):1348-54. PubMed ID: 12892501 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]