BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 23885899)

  • 1. Investigating uptake and translocation of mercury species by sawgrass ( Cladium jamaicense ) using a stable isotope tracer technique.
    Mao Y; Li Y; Richards J; Cai Y
    Environ Sci Technol; 2013 Sep; 47(17):9678-84. PubMed ID: 23885899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tracing the Uptake, Transport, and Fate of Mercury in Sawgrass ( Cladium jamaicense) in the Florida Everglades Using a Multi-isotope Technique.
    Meng B; Li Y; Cui W; Jiang P; Liu G; Wang Y; Richards J; Feng X; Cai Y
    Environ Sci Technol; 2018 Mar; 52(6):3384-3391. PubMed ID: 29466662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: implications for mercury bioaccumulation.
    Liu G; Cai Y; Philippi T; Kalla P; Scheidt D; Richards J; Scinto L; Appleby C
    Environ Pollut; 2008 May; 153(2):257-65. PubMed ID: 17945404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential sources of methylmercury in tree foliage.
    Tabatchnick MD; Nogaro G; Hammerschmidt CR
    Environ Pollut; 2012 Jan; 160(1):82-7. PubMed ID: 22035929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Legacy and fate of mercury and methylmercury in the Florida Everglades.
    Liu G; Naja GM; Kalla P; Scheidt D; Gaiser E; Cai Y
    Environ Sci Technol; 2011 Jan; 45(2):496-501. PubMed ID: 21158447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of the major source and sink of methylmercury in the Florida Everglades.
    Li Y; Yin Y; Liu G; Tachiev G; Roelant D; Jiang G; Cai Y
    Environ Sci Technol; 2012 Jun; 46(11):5885-93. PubMed ID: 22536798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercury stable isotopes in sediments and largemouth bass from Florida lakes, USA.
    Sherman LS; Blum JD
    Sci Total Environ; 2013 Mar; 448():163-75. PubMed ID: 23062970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of burn temperature on ash nutrient forms and availability from cattail (Typha domingensis) and sawgrass (Cladium jamaicense) in the Florida Everglades.
    Qian Y; Miao SL; Gu B; Li YC
    J Environ Qual; 2009; 38(2):451-64. PubMed ID: 19202015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of methylmercury and its effects on mercury distribution and cycling in the Florida Everglades.
    Li Y; Mao Y; Liu G; Tachiev G; Roelant D; Feng X; Cai Y
    Environ Sci Technol; 2010 Sep; 44(17):6661-6. PubMed ID: 20701294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mercury mass budget estimates and cycling seasonality in the Florida Everglades.
    Liu G; Cai Y; Kalla P; Scheidt D; Richards J; Scinto LJ; Gaiser E; Appleby C
    Environ Sci Technol; 2008 Mar; 42(6):1954-60. PubMed ID: 18409620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A common-mesocosm experiment recreates sawgrass (Cladium jamaicense) phenotypes from Everglades marl prairies and peat marshes.
    Richards JH; Olivas PC
    Am J Bot; 2020 Jan; 107(1):56-65. PubMed ID: 31889308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Field controlled experiments of mercury accumulation in crops from air and soil.
    Niu Z; Zhang X; Wang Z; Ci Z
    Environ Pollut; 2011 Oct; 159(10):2684-9. PubMed ID: 21723013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can differences in phosphorus uptake kinetics explain the distribution of cattail and sawgrass in the Florida Everglades?
    Brix H; Lorenzen B; Mendelssohn IA; McKee KL; Miao S
    BMC Plant Biol; 2010 Feb; 10():23. PubMed ID: 20141632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of mercury exposure among small-scale gold miners using mercury stable isotopes.
    Sherman LS; Blum JD; Basu N; Rajaee M; Evers DC; Buck DG; Petrlik J; DiGangi J
    Environ Res; 2015 Feb; 137():226-34. PubMed ID: 25577187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoremediation of mercury- and methyl mercury-contaminated sediments by water hyacinth (Eichhornia crassipes).
    Chattopadhyay S; Fimmen RL; Yates BJ; Lal V; Randall P
    Int J Phytoremediation; 2012 Feb; 14(2):142-61. PubMed ID: 22567701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental assessment of mercury dispersion, transformation and bioavailability in the Lake Victoria Goldfields, Tanzania.
    Ikingura JR; Akagi H; Mujumba J; Messo C
    J Environ Manage; 2006 Oct; 81(2):167-73. PubMed ID: 16782263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Newly deposited atmospheric mercury in a simulated rice ecosystem in an active mercury mining region: High loading, accumulation, and availability.
    Ao M; Xu X; Wu Y; Zhang C; Meng B; Shang L; Liang L; Qiu R; Wang S; Qian X; Zhao L; Qiu G
    Chemosphere; 2020 Jan; 238():124630. PubMed ID: 31473530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atmospheric mercury exchange with a tallgrass prairie ecosystem housed in mesocosms.
    Stamenkovic J; Gustin MS; Arnone JA; Johnson DW; Larsen JD; Verburg PS
    Sci Total Environ; 2008 Nov; 406(1-2):227-38. PubMed ID: 18775555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using species-specific enriched stable isotopes to study the effect of fresh mercury inputs in soil-earthworm systems.
    Álvarez CR; Jiménez-Moreno M; Bernardo FJG; Martín-Doimeadios RCR; Nevado JJB
    Ecotoxicol Environ Saf; 2018 Jan; 147():192-199. PubMed ID: 28843190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of mercury stress on methylmercury production in rice rhizosphere, methylmercury uptake in rice and physiological changes of leaves.
    Guo P; Du H; Wang D; Ma M
    Sci Total Environ; 2021 Apr; 765():142682. PubMed ID: 33572042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.