These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 23885899)

  • 21. Accumulation and translocation of 198Hg in four crop species.
    Cui L; Feng X; Lin CJ; Wang X; Meng B; Wang X; Wang H
    Environ Toxicol Chem; 2014 Feb; 33(2):334-40. PubMed ID: 24173818
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Periphyton and Flocculent Materials Are Important Ecological Compartments Supporting Abundant and Diverse Mercury Methylator Assemblages in the Florida Everglades.
    Bae HS; Dierberg FE; Ogram A
    Appl Environ Microbiol; 2019 Jul; 85(13):. PubMed ID: 31028023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mercury biomagnification in the aquaculture pond ecosystem in the Pearl River Delta.
    Cheng Z; Liang P; Shao DD; Wu SC; Nie XP; Chen KC; Li KB; Wong MH
    Arch Environ Contam Toxicol; 2011 Oct; 61(3):491-9. PubMed ID: 21290120
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sources and transfers of methylmercury in adjacent river and forest food webs.
    Tsui MT; Blum JD; Kwon SY; Finlay JC; Balogh SJ; Nollet YH
    Environ Sci Technol; 2012 Oct; 46(20):10957-64. PubMed ID: 23033864
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ecological effects of low-level phosphorus additions on two plant communities in a neotropical freshwater wetland ecosystem.
    Daoust RJ; Childers DL
    Oecologia; 2004 Dec; 141(4):672-86. PubMed ID: 15365807
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mercury accumulation in grass and forb species as a function of atmospheric carbon dioxide concentrations and mercury exposures in air and soil.
    Millhollen AG; Obrist D; Gustin MS
    Chemosphere; 2006 Oct; 65(5):889-97. PubMed ID: 16631233
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mercury uptake and translocation in Impatiens walleriana plants grown in the contaminated soil from Oak Ridge.
    Pant P; Allen M; Tansel B
    Int J Phytoremediation; 2011 Feb; 13(2):168-76. PubMed ID: 21598784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Characteristics of Mercury Transformation in Soil and Accumulation in Rice Plants in an Acidic Purple Paddy Soil Area].
    Li YQ; Sun T; Deng H; Zhang C; Wang YM; Wang DY
    Huan Jing Ke Xue; 2018 May; 39(5):2472-2479. PubMed ID: 29965549
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mercury mobility and effects in the salt-marsh plant Halimione portulacoides: Uptake, transport, and toxicity and tolerance mechanisms.
    Cabrita MT; Duarte B; Cesário R; Mendes R; Hintelmann H; Eckey K; Dimock B; Caçador I; Canário J
    Sci Total Environ; 2019 Feb; 650(Pt 1):111-120. PubMed ID: 30196211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Growing rice aerobically markedly decreases mercury accumulation by reducing both Hg bioavailability and the production of MeHg.
    Wang X; Ye Z; Li B; Huang L; Meng M; Shi J; Jiang G
    Environ Sci Technol; 2014; 48(3):1878-85. PubMed ID: 24383449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Importance of the forest canopy to fluxes of methyl mercury and total mercury to boreal ecosystems.
    St Louis VL; Rudd JW; Kelly CA; Hall BD; Rolfhus KR; Scott KJ; Lindberg SE; Dong W
    Environ Sci Technol; 2001 Aug; 35(15):3089-98. PubMed ID: 11508309
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selenium in soil inhibits mercury uptake and translocation in rice (Oryza sativa L.).
    Zhang H; Feng X; Zhu J; Sapkota A; Meng B; Yao H; Qin H; Larssen T
    Environ Sci Technol; 2012 Sep; 46(18):10040-6. PubMed ID: 22916794
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influences of high-level atmospheric gaseous elemental mercury on methylmercury accumulation in maize (Zea mays L.).
    Sun T; Wang Z; Zhang X; Niu Z; Chen J
    Environ Pollut; 2020 Oct; 265(Pt B):114890. PubMed ID: 32544787
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selenium modulates mercury uptake and distribution in rice (Oryza sativa L.), in correlation with mercury species and exposure level.
    Zhao J; Li Y; Li Y; Gao Y; Li B; Hu Y; Zhao Y; Chai Z
    Metallomics; 2014 Oct; 6(10):1951-7. PubMed ID: 25142173
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Corn (Zea mays L.): A low methylmercury staple cereal source and an important biospheric sink of atmospheric mercury, and health risk assessment.
    Sun G; Feng X; Yin R; Zhao H; Zhang L; Sommar J; Li Z; Zhang H
    Environ Int; 2019 Oct; 131():104971. PubMed ID: 31284107
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mercury accumulation in upland acid forest ecosystems nearby a coal-fired power-plant in southwest Europe (Galicia, NW Spain).
    Nóvoa-Muñoz JC; Pontevedra-Pombal X; Martínez-Cortizas A; García-Rodeja Gayoso E
    Sci Total Environ; 2008 May; 394(2-3):303-12. PubMed ID: 18295823
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of iodide to enhance the phytoextraction of mercury-contaminated soil.
    Wang Y; Greger M
    Sci Total Environ; 2006 Sep; 368(1):30-9. PubMed ID: 16236348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Foliar exchange of mercury as a function of soil and air mercury concentrations.
    Ericksen JA; Gustin MS
    Sci Total Environ; 2004 May; 324(1-3):271-9. PubMed ID: 15081712
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Foliar mercury accumulation and exchange for three tree species.
    Millhollen AG; Gustin MS; Obrist D
    Environ Sci Technol; 2006 Oct; 40(19):6001-6. PubMed ID: 17051791
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatial variability in mercury cycling and relevant biogeochemical controls in the Florida Everglades.
    Liu G; Cai Y; Mao Y; Scheidt D; Kalla P; Richards J; Scinto LJ; Tachiev G; Roelant D; Appleby C
    Environ Sci Technol; 2009 Jun; 43(12):4361-6. PubMed ID: 19603647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.