These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 2388626)

  • 1. Enhancers for RNA polymerase I in mouse ribosomal DNA.
    Pikaard CS; Pape LK; Henderson SL; Ryan K; Paalman MH; Lopata MA; Reeder RH; Sollner-Webb B
    Mol Cell Biol; 1990 Sep; 10(9):4816-25. PubMed ID: 2388626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 140-base-pair repetitive sequence element in the mouse rRNA gene spacer enhances transcription by RNA polymerase I in a cell-free system.
    Kuhn A; Deppert U; Grummt I
    Proc Natl Acad Sci U S A; 1990 Oct; 87(19):7527-31. PubMed ID: 2217183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosomal gene promoter domains can function as artificial enhancers of RNA polymerase I transcription, supporting a promoter origin for natural enhancers in Xenopus.
    Pikaard CS
    Proc Natl Acad Sci U S A; 1994 Jan; 91(2):464-8. PubMed ID: 8290549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xenopus ribosomal RNA gene intergenic spacer elements conferring transcriptional enhancement and nucleolar dominance-like competition in oocytes.
    Caudy AA; Pikaard CS
    J Biol Chem; 2002 Aug; 277(35):31577-84. PubMed ID: 12080048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperative binding of the Xenopus RNA polymerase I transcription factor xUBF to repetitive ribosomal gene enhancers.
    Putnam CD; Pikaard CS
    Mol Cell Biol; 1992 Nov; 12(11):4970-80. PubMed ID: 1406673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtually the entire Xenopus laevis rDNA multikilobase intergenic spacer serves to stimulate polymerase I transcription.
    Mougey EB; Pape LK; Sollner-Webb B
    J Biol Chem; 1996 Oct; 271(43):27138-45. PubMed ID: 8900206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancer-like properties of the 60/81 bp elements in the ribosomal gene spacer of Xenopus laevis.
    Labhart P; Reeder RH
    Cell; 1984 May; 37(1):285-9. PubMed ID: 6722873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of Arabidopsis thaliana rRNA gene and spacer promoters in vivo and by transient expression.
    Doelling JH; Gaudino RJ; Pikaard CS
    Proc Natl Acad Sci U S A; 1993 Aug; 90(16):7528-32. PubMed ID: 8356050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence elements essential for function of the Xenopus laevis ribosomal DNA enhancers.
    Pikaard CS; Reeder RH
    Mol Cell Biol; 1988 Oct; 8(10):4282-8. PubMed ID: 3185550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Xenopus ribosomal DNA 60- and 81-base-pair repeats are position-dependent enhancers that function at the establishment of the preinitiation complex: analysis in vivo and in an enhancer-responsive in vitro system.
    Pape LK; Windle JJ; Mougey EB; Sollner-Webb B
    Mol Cell Biol; 1989 Nov; 9(11):5093-104. PubMed ID: 2601710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence organization of the Acanthamoeba rRNA intergenic spacer: identification of transcriptional enhancers.
    Yang Q; Zwick MG; Paule MR
    Nucleic Acids Res; 1994 Nov; 22(22):4798-805. PubMed ID: 7984432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xenopus ribosomal gene enhancers function when inserted inside the gene they enhance.
    Labhart P; Reeder RH
    Nucleic Acids Res; 1985 Dec; 13(24):8999-9009. PubMed ID: 4080555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transactivation of the Xenopus rRNA gene promoter by its enhancer.
    Dunaway M; Dröge P
    Nature; 1989 Oct; 341(6243):657-9. PubMed ID: 2797192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Deconvolution Protocol for ChIP-Seq Reveals Analogous Enhancer Structures on the Mouse and Human Ribosomal RNA Genes.
    Mars JC; Sabourin-Felix M; Tremblay MG; Moss T
    G3 (Bethesda); 2018 Jan; 8(1):303-314. PubMed ID: 29158335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Xenopus RNA polymerase I transcription factor, UBF, has a role in transcriptional enhancement distinct from that at the promoter.
    McStay B; Sullivan GJ; Cairns C
    EMBO J; 1997 Jan; 16(2):396-405. PubMed ID: 9029158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of the mouse rRNA gene promoter by a distal spacer promoter.
    Paalman MH; Henderson SL; Sollner-Webb B
    Mol Cell Biol; 1995 Aug; 15(8):4648-56. PubMed ID: 7623857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat.
    O'Sullivan AC; Sullivan GJ; McStay B
    Mol Cell Biol; 2002 Jan; 22(2):657-68. PubMed ID: 11756560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex formation of nuclear proteins with the RNA polymerase I promoter and repeated elements in the external transcribed spacer of Cucumis sativus ribosomal DNA.
    Zentgraf U; Hemleben V
    Nucleic Acids Res; 1992 Jul; 20(14):3685-91. PubMed ID: 1641334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spacer promoters are essential for efficient enhancement of X. laevis ribosomal transcription.
    De Winter RF; Moss T
    Cell; 1986 Jan; 44(2):313-8. PubMed ID: 3943126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A termination site for Xenopus RNA polymerase I also acts as an element of an adjacent promoter.
    McStay B; Reeder RH
    Cell; 1986 Dec; 47(6):913-20. PubMed ID: 3779846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.