BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 23886546)

  • 21. Development of a novel process for the biological conversion of H2S and methanethiol to elemental sulfur.
    Sipma J; Janssen AJ; Pol LW; Lettinga G
    Biotechnol Bioeng; 2003 Apr; 82(1):1-11. PubMed ID: 12569619
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new sulfidogenic oxic-settling anaerobic (SOSA) process: The effects of sulfur-cycle bioaugmentation on the operational performance, sludge properties and microbial communities.
    Huang H; Ekama GA; Biswal BK; Dai J; Jiang F; Chen GH; Wu D
    Water Res; 2019 Oct; 162():30-42. PubMed ID: 31254884
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The anaerobic treatment of sewage and granule formation in upflow anaerobic sludge blanket reactor.
    Makni H; Bettaieb F; Dhaouadi H; M'Henni F; Bakhrouf A
    Environ Technol; 2006 Sep; 27(9):1031-6. PubMed ID: 17067129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitrogen removal in an upflow sludge blanket (USB) reactor combined by aerobic biofiltration systems.
    Jun HB; Park SM; Park JK; Choi CO; Lee JS
    Water Sci Technol; 2004; 49(5-6):191-7. PubMed ID: 15137423
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Study on the treatment of sulfite wastewater by Desulfovibrio.
    Zhao B; Sun H; Jiang P; Rizwan M; Zhou M; Zhou X
    Bioprocess Biosyst Eng; 2023 Sep; 46(9):1265-1278. PubMed ID: 37418179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodesulfurization of flue gases and other sulfate/sulfite waste streams using immobilized mixed sulfate-reducing bacteria.
    Selvaraj PT; Little MH; Kaufman EN
    Biotechnol Prog; 1997; 13(5):583-9. PubMed ID: 9376112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biological leaching of heavy metals from anaerobically digested sewage sludge using indigenous sulfur-oxidizing bacteria and sulfur waste in a closed system.
    Kitada K; Ito A; Yamada K; Aizawa J; Umita T
    Water Sci Technol; 2001; 43(2):59-65. PubMed ID: 11380206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anaerobic treatment for C and S removal in "zero-discharge" paper mills: effects of process design on S removal efficiencies.
    van Lier JB; Lens PN; Pol LW
    Water Sci Technol; 2001; 44(4):189-95. PubMed ID: 11575084
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integration of sulphate reduction, autotrophic denitrification and nitrification to achieve low-cost excess sludge minimisation for Hong Kong sewage.
    Lau GN; Sharma KR; Chen GH; van Loosdrecht MC
    Water Sci Technol; 2006; 53(3):227-35. PubMed ID: 16605036
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial community of sulfate-reducing up-flow sludge bed in the SANI® process for saline sewage treatment.
    Wang J; Shi M; Lu H; Wu D; Shao MF; Zhang T; Ekama GA; van Loosdrecht MC; Chen GH
    Appl Microbiol Biotechnol; 2011 Jun; 90(6):2015-25. PubMed ID: 21494868
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anaerobic sewage treatment in a one-stage UASB reactor and a combined UASB-Digester system.
    Mahmoud N; Zeeman G; Gijzen H; Lettinga G
    Water Res; 2004 May; 38(9):2347-57. PubMed ID: 15142796
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A biological process for the reclamation of flue gas desulfurization gypsum using mixed sulfate-reducing bacteria with inexpensive carbon sources.
    Kaufman EN; Little MH; Selvaraj P
    Appl Biochem Biotechnol; 1997; 63-65():677-93. PubMed ID: 18576124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel application of an anaerobic membrane process in wastewater treatment.
    You HS; Tseng CC; Peng MJ; Chang SH; Chen YC; Peng SH
    Water Sci Technol; 2005; 51(6-7):45-50. PubMed ID: 16003960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biological nutrient removal in simple dual sludge system with an UMBR (upflow multi-layer bioreactor) and aerobic biofilm reactor.
    Kwon JC; Park HS; An JY; Shim KB; Kim YH; Shin HS
    Water Sci Technol; 2005; 52(10-11):443-51. PubMed ID: 16459820
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Granulation of sulfur-oxidizing bacteria for autotrophic denitrification.
    Yang W; Lu H; Khanal SK; Zhao Q; Meng L; Chen GH
    Water Res; 2016 Nov; 104():507-519. PubMed ID: 27589211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biogas purification and ammonia load reduction in sewage treatment by two-stage down-flow hanging sponge reactor.
    Tanikawa D; Motokawa D; Itoiri Y; Kimura ZI; Ito M; Nagano A
    Sci Total Environ; 2022 Dec; 851(Pt 2):158355. PubMed ID: 36041617
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Roles of sulfite and internal recirculation on organic compound removal and the microbial community structure of a sulfur cycle-driven biological wastewater treatment process.
    Qian J; Zhang M; Niu J; Fu X; Pei X; Chang X; Wei L; Liu R; Chen GH; Jiang F
    Chemosphere; 2019 Jul; 226():825-833. PubMed ID: 30974375
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integration of anammox into the aerobic granular sludge process for main stream wastewater treatment at ambient temperatures.
    Winkler MK; Kleerebezem R; van Loosdrecht MC
    Water Res; 2012 Jan; 46(1):136-44. PubMed ID: 22094002
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance evaluation of various aerobic biological systems for the treatment of domestic wastewater at low temperatures.
    Sundaresan N; Philip L
    Water Sci Technol; 2008; 58(4):819-30. PubMed ID: 18776617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mesophilic and thermophilic biological post treatment of anaerobic pretreated paper process water in a closed cycle paper mill.
    Vogelaar JC; Van Lier JB; Klapwijk B; De Vries MC; Lettinga G
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3a):119-27. PubMed ID: 15954571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.