BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 23886851)

  • 1. Scale-up and kinetic modeling for bioethanol production.
    Imamoglu E; Sukan FV
    Bioresour Technol; 2013 Sep; 144():311-20. PubMed ID: 23886851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional differences in rice hulls supply for bioethanol production.
    Imamoglu E; Dalay MC; Sukan FV
    Appl Biochem Biotechnol; 2013 Dec; 171(8):2065-74. PubMed ID: 24022780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microaeration enhances productivity of bioethanol from hydrolysate of waste house wood using ethanologenic Escherichia coli KO11.
    Okuda N; Ninomiya K; Takao M; Katakura Y; Shioya S
    J Biosci Bioeng; 2007 Apr; 103(4):350-7. PubMed ID: 17502277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate.
    Silva JP; Mussatto SI; Roberto IC
    Appl Biochem Biotechnol; 2010 Nov; 162(5):1306-15. PubMed ID: 19946760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pretreatment of rice straw using an extrusion/extraction process at bench-scale for producing cellulosic ethanol.
    Chen WH; Xu YY; Hwang WS; Wang JB
    Bioresour Technol; 2011 Nov; 102(22):10451-8. PubMed ID: 21958526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic modeling and scale up of lipoic acid (LA) production from Saccharomyces cerevisiae in a stirred tank bioreactor.
    Jayakar SS; Singhal RS
    Bioprocess Biosyst Eng; 2013 Aug; 36(8):1063-70. PubMed ID: 23178984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic global sensitivity analysis in bioreactor networks for bioethanol production.
    Ochoa MP; Estrada V; Di Maggio J; Hoch PM
    Bioresour Technol; 2016 Jan; 200():666-79. PubMed ID: 26556401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential hydrolysis of waste newspaper and bioethanol production from the hydrolysate.
    Wu FC; Huang SS; Shih IL
    Bioresour Technol; 2014 Sep; 167():159-68. PubMed ID: 24980028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous bioethanol production from oilseed rape straw hydrosylate using immobilised Saccharomyces cerevisiae cells.
    Mathew AK; Crook M; Chaney K; Humphries AC
    Bioresour Technol; 2014 Feb; 154():248-53. PubMed ID: 24406845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of scale-down techniques for investigation of recombinant Escherichia coli fermentations: acid metabolites in shake flasks and stirred bioreactors.
    Dahlgren ME; Powell AL; Greasham RL; George HA
    Biotechnol Prog; 1993; 9(6):580-6. PubMed ID: 7764346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DiSC (direct saccharification of culms) process for bioethanol production from rice straw.
    Park JY; Ike M; Arakane M; Shiroma R; Li Y; Arai-Sanoh Y; Kondo M; Tokuyasu K
    Bioresour Technol; 2011 Jun; 102(11):6502-7. PubMed ID: 21498073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous saccharification and continuous fermentation of sludge-containing mash for bioethanol production by Saccharomyces cerevisiae CHFY0321.
    Moon SK; Kim SW; Choi GW
    J Biotechnol; 2012 Feb; 157(4):584-9. PubMed ID: 21723335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pilot-scale ethanol production from rice straw hydrolysates using xylose-fermenting Pichia stipitis.
    Lin TH; Huang CF; Guo GL; Hwang WS; Huang SL
    Bioresour Technol; 2012 Jul; 116():314-9. PubMed ID: 22537402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces cerevisiae and Pichia stipitis.
    Yadav KS; Naseeruddin S; Prashanthi GS; Sateesh L; Rao LV
    Bioresour Technol; 2011 Jun; 102(11):6473-8. PubMed ID: 21470850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New milliliter-scale stirred tank bioreactors for the cultivation of mycelium forming microorganisms.
    Hortsch R; Stratmann A; Weuster-Botz D
    Biotechnol Bioeng; 2010 Jun; 106(3):443-51. PubMed ID: 20198653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New miniature stirred-tank bioreactors for parallel study of enzymatic biomass hydrolysis.
    Riedlberger P; Weuster-Botz D
    Bioresour Technol; 2012 Feb; 106():138-46. PubMed ID: 22206921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of biobutanol production from non-pretreated rice straw hydrolysate under non-sterile environmental conditions.
    Chen WH; Chen YC; Lin JG
    Bioresour Technol; 2013 May; 135():262-8. PubMed ID: 23186674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated biocatalytic process for trehalose production and separation from rice hydrolysate using a bioreactor system.
    Chang SW; Liu PT; Hsu LC; Chen CS; Shaw JF
    Food Chem; 2012 Oct; 134(4):1745-53. PubMed ID: 23442616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation.
    Li Y; Park JY; Shiroma R; Tokuyasu K
    J Biosci Bioeng; 2011 Jun; 111(6):682-6. PubMed ID: 21397557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of light availability on the biomass production, CO2 fixation, and bioethanol production potential of Thermosynechococcus CL-1.
    Su CM; Hsueh HT; Li TY; Huang LC; Chu YL; Tseng CM; Chu H
    Bioresour Technol; 2013 Oct; 145():162-5. PubMed ID: 23545071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.