These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 23887033)
1. In vitro bacterial fermentation of tropical fruit fibres. Vong MH; Stewart ML Benef Microbes; 2013 Sep; 4(3):291-5. PubMed ID: 23887033 [TBL] [Abstract][Full Text] [Related]
2. In vitro fermentation of chewed mango and banana: particle size, starch and vascular fibre effects. Low DY; Williams BA; D'Arcy BR; Flanagan BM; Gidley MJ Food Funct; 2015 Aug; 6(8):2464-74. PubMed ID: 26215214 [TBL] [Abstract][Full Text] [Related]
3. Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Martínez R; Torres P; Meneses MA; Figueroa JG; Pérez-Álvarez JA; Viuda-Martos M Food Chem; 2012 Dec; 135(3):1520-6. PubMed ID: 22953888 [TBL] [Abstract][Full Text] [Related]
4. Postprandial glucose response to selected tropical fruits in normal glucose-tolerant Nigerians. Edo A; Eregie A; Adediran O; Ohwovoriole A; Ebengho S Niger J Clin Pract; 2011; 14(1):79-82. PubMed ID: 21493998 [TBL] [Abstract][Full Text] [Related]
5. In Vitro Gastrointestinal Digestion and Colonic Fermentation of High Dietary Fiber and Antioxidant-Rich Mango ( Hernández-Maldonado LM; Blancas-Benítez FJ; Zamora-Gasga VM; Cárdenas-Castro AP; Tovar J; Sáyago-Ayerdi SG Nutrients; 2019 Jul; 11(7):. PubMed ID: 31336740 [TBL] [Abstract][Full Text] [Related]
6. Comparison of different fibers for in vitro production of short chain fatty acids by intestinal microflora. Pylkas AM; Juneja LR; Slavin JL J Med Food; 2005; 8(1):113-6. PubMed ID: 15857221 [TBL] [Abstract][Full Text] [Related]
7. Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs. Jha R; Leterme P Animal; 2012 Apr; 6(4):603-11. PubMed ID: 22436276 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of nutritional and antioxidant properties of the tropical fruits banana, litchi, mango, papaya, passion fruit and pineapple cultivated in Réunion French Island. Septembre-Malaterre A; Stanislas G; Douraguia E; Gonthier MP Food Chem; 2016 Dec; 212():225-33. PubMed ID: 27374527 [TBL] [Abstract][Full Text] [Related]
9. In Vitro Fecal Fermentation of High Pressure-Treated Fruit Peels Used as Dietary Fiber Sources. Tejada-Ortigoza V; Garcia-Amezquita LE; Kazem AE; Campanella OH; Cano MP; Hamaker BR; Serna-Saldívar SO; Welti-Chanes J Molecules; 2019 Feb; 24(4):. PubMed ID: 30769960 [TBL] [Abstract][Full Text] [Related]
10. Dietary fibre and fermentability characteristics of root crops and legumes. Mallillin AC; Trinidad TP; Raterta R; Dagbay K; Loyola AS Br J Nutr; 2008 Sep; 100(3):485-8. PubMed ID: 18331664 [TBL] [Abstract][Full Text] [Related]
11. Current status of tropical fruit breeding and genetics for three tropical fruit species cultivated in Japan: pineapple, mango, and papaya. Ogata T; Yamanaka S; Shoda M; Urasaki N; Yamamoto T Breed Sci; 2016 Jan; 66(1):69-81. PubMed ID: 27069392 [TBL] [Abstract][Full Text] [Related]
12. Comparison of konjac glucomannan digestibility and fermentability with other dietary fibers in vitro. Chiu YT; Stewart M J Med Food; 2012 Feb; 15(2):120-5. PubMed ID: 22149628 [TBL] [Abstract][Full Text] [Related]
13. Wheat dextrin, psyllium, and inulin produce distinct fermentation patterns, gas volumes, and short-chain fatty acid profiles in vitro. Timm DA; Stewart ML; Hospattankar A; Slavin JL J Med Food; 2010 Aug; 13(4):961-6. PubMed ID: 20482283 [TBL] [Abstract][Full Text] [Related]
15. Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in vitro colon model. Nordlund E; Aura AM; Mattila I; Kössö T; Rouau X; Poutanen K J Agric Food Chem; 2012 Aug; 60(33):8134-45. PubMed ID: 22731123 [TBL] [Abstract][Full Text] [Related]
16. Influence of the amount of dietary fiber on the available energy from hindgut fermentation in growing pigs: use of cannulated pigs and in vitro fermentation. Anguita M; Canibe N; Pérez JF; Jensen BB J Anim Sci; 2006 Oct; 84(10):2766-78. PubMed ID: 16971578 [TBL] [Abstract][Full Text] [Related]
17. Fructooligosaccharides exhibit more rapid fermentation than long-chain inulin in an in vitro fermentation system. Stewart ML; Timm DA; Slavin JL Nutr Res; 2008 May; 28(5):329-34. PubMed ID: 19083428 [TBL] [Abstract][Full Text] [Related]
18. Inter-relationship of microbial activity, digestion and gut health in the rabbit: effect of substituting fibre by starch in diets having a high proportion of rapidly fermentable polysaccharides. Gidenne T; Jehl N; Lapanouse A; Segura M Br J Nutr; 2004 Jul; 92(1):95-104. PubMed ID: 15230992 [TBL] [Abstract][Full Text] [Related]
19. Growth Potential of Listeria Monocytogenes and Staphylococcus Aureus on Fresh-Cut Tropical Fruits. Feng K; Hu W; Jiang A; Xu Y; Sarengaowa ; Li X; Bai X J Food Sci; 2015 Nov; 80(11):M2548-54. PubMed ID: 26862605 [TBL] [Abstract][Full Text] [Related]
20. Influence of source and concentrations of dietary fiber on in vivo nitrogen excretion pathways in pigs as reflected by in vitro fermentation and nitrogen incorporation by fecal bacteria. Bindelle J; Buldgen A; Delacollette M; Wavreille J; Agneessens R; Destain JP; Leterme P J Anim Sci; 2009 Feb; 87(2):583-93. PubMed ID: 18791157 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]