BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 23887310)

  • 41. Twin-core fiber optical tweezers.
    Yuan L; Liu Z; Yang J; Guan C
    Opt Express; 2008 Mar; 16(7):4559-66. PubMed ID: 18542553
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Custom-Made Microspheres for Optical Tweezers.
    Jannasch A; Abdosamadi MK; Ramaiya A; De S; Ferro V; Sonnberger A; Schäffer E
    Methods Mol Biol; 2017; 1486():137-155. PubMed ID: 27844428
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Localized optical manipulation in optical ring resonators.
    Wang H; Wu X; Shen D
    Opt Express; 2015 Oct; 23(21):27650-60. PubMed ID: 26480427
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tunable optical tweezers for wavelength-dependent measurements.
    Hester B; Campbell GK; López-Mariscal C; Filgueira CL; Huschka R; Halas NJ; Helmerson K
    Rev Sci Instrum; 2012 Apr; 83(4):043114. PubMed ID: 22559522
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lightsheet optical tweezer (LOT) for optical manipulation of microscopic particles and live cells.
    Mondal PP; Baro N; Singh A; Joshi P; Basumatary J
    Sci Rep; 2022 Jun; 12(1):10229. PubMed ID: 35715431
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Plasmon enhanced optical tweezers with gold-coated black silicon.
    Kotsifaki DG; Kandyla M; Lagoudakis PG
    Sci Rep; 2016 May; 6():26275. PubMed ID: 27195446
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Three-dimensional manipulation with scanning near-field optical nanotweezers.
    Berthelot J; Aćimović SS; Juan ML; Kreuzer MP; Renger J; Quidant R
    Nat Nanotechnol; 2014 Apr; 9(4):295-9. PubMed ID: 24584272
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optical deflection and sorting of microparticles in a near-field optical geometry.
    Marchington RF; Mazilu M; Kuriakose S; Garcés-Chávez V; Reece PJ; Krauss TF; Gu M; Dholakia K
    Opt Express; 2008 Mar; 16(6):3712-26. PubMed ID: 18542466
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plasmonic tweezers: for nanoscale optical trapping and beyond.
    Zhang Y; Min C; Dou X; Wang X; Urbach HP; Somekh MG; Yuan X
    Light Sci Appl; 2021 Mar; 10(1):59. PubMed ID: 33731693
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Manipulation of large, irregular-shape particles using contour-tracking optical tweezers.
    Omine R; Masui S; Kadoya S; Michihata M; Takahashi S
    Opt Lett; 2024 May; 49(10):2773-2776. PubMed ID: 38748158
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An Optically Controlled Microscale Elevator Using Plasmonic Janus Particles.
    Nedev S; Carretero-Palacios S; Kühler P; Lohmüller T; Urban AS; Anderson LJ; Feldmann J
    ACS Photonics; 2015 Apr; 2(4):491-496. PubMed ID: 25950013
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Why single-beam optical tweezers trap gold nanowires in three dimensions.
    Yan Z; Pelton M; Vigderman L; Zubarev ER; Scherer NF
    ACS Nano; 2013 Oct; 7(10):8794-800. PubMed ID: 24041038
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plasmonic tweezers for optical manipulation and biomedical applications.
    Tan H; Hu H; Huang L; Qian K
    Analyst; 2020 Aug; 145(17):5699-5712. PubMed ID: 32692343
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In plane manipulation of a dielectric nanobeam with gradient optical forces.
    Favuzzi PA; Bardoux R; Asano T; Kawakami Y; Noda S
    Opt Express; 2013 Dec; 21(24):29129-39. PubMed ID: 24514464
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Contactless optical trapping and manipulation of nanoparticles utilizing SIBA mechanism and EDL force.
    Sahafi M; Habibzadeh-Sharif A
    Opt Express; 2019 Sep; 27(20):28944-28951. PubMed ID: 31684637
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Micromanipulation by "multiple" optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope.
    Visscher K; Brakenhoff GJ; Krol JJ
    Cytometry; 1993; 14(2):105-14. PubMed ID: 8440145
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A numerical study on the closed packed array of gold discs as an efficient dual mode plasmonic tweezers.
    Aqhili A; Darbari S
    Sci Rep; 2021 Oct; 11(1):20656. PubMed ID: 34667247
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reflectionless dual standing-wave microcavity resonator units for photonic integrated circuits.
    Al Qubaisi K; Popović MA
    Opt Express; 2020 Nov; 28(24):35986-35996. PubMed ID: 33379703
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plasmonic Optical Tweezers for Particle Manipulation: Principles, Methods, and Applications.
    Ren Y; Chen Q; He M; Zhang X; Qi H; Yan Y
    ACS Nano; 2021 Apr; 15(4):6105-6128. PubMed ID: 33834771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.