These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 23887310)

  • 61. Plasmonic Optical Tweezers for Particle Manipulation: Principles, Methods, and Applications.
    Ren Y; Chen Q; He M; Zhang X; Qi H; Yan Y
    ACS Nano; 2021 Apr; 15(4):6105-6128. PubMed ID: 33834771
    [TBL] [Abstract][Full Text] [Related]  

  • 62. In Situ Assembling of Glass Microspheres and Bonding Force Analysis by the Ultraviolet-Near-Infrared Dual-Beam Optical Tweezer System.
    Tang H; Kishi T; Yano T
    ACS Omega; 2021 May; 6(18):11869-11877. PubMed ID: 34056341
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Thermophoresis suppression by graphene layer in tunable plasmonic tweezers based on hexagonal arrays of gold triangles: numerical study.
    Samadi M; Darbari S; Moravvej-Farshi MK
    Opt Express; 2021 Aug; 29(18):29056-29067. PubMed ID: 34615023
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Molecular filter on-chip design for drug targeting use.
    Aziz MS; Jukgoljan B; Daud S; Tan TS; Ali J; Yupapin PP
    Artif Cells Nanomed Biotechnol; 2013 Jun; 41(3):178-83. PubMed ID: 22991944
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Subwavelength optical trapping with a fiber-based surface plasmonic lens.
    Liu Y; Stief F; Yu M
    Opt Lett; 2013 Mar; 38(5):721-3. PubMed ID: 23455277
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Label-free plasmonic assisted optical trapping of single DNA molecules.
    Chen L; Liu W; Shen D; Zhou Z; Liu Y; Wan W
    Opt Lett; 2021 Mar; 46(6):1482-1485. PubMed ID: 33720217
    [TBL] [Abstract][Full Text] [Related]  

  • 67. On-chip optical trapping of extracellular vesicles using box-shaped composite SiO
    Loozen GB; Caro J
    Opt Express; 2018 Oct; 26(21):26985-27000. PubMed ID: 30469775
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Opto-hydrodynamic tweezers.
    Vasantham S; Kotnala A; Promovych Y; Garstecki P; Derzsi L
    Lab Chip; 2024 Jan; 24(3):517-527. PubMed ID: 38165913
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Tunable plasmonic tweezers based on graphene nano-taper for nano-bio-particles manipulation: numerical study.
    Khorami AA; Barahimi B; Vatani S; Javanmard AS
    Opt Express; 2023 Jun; 31(13):21063-21077. PubMed ID: 37381215
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add-drop devices.
    Cai H; Poon AW
    Opt Lett; 2010 Sep; 35(17):2855-7. PubMed ID: 20808347
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Experimental demonstration of optical trapping and manipulation with multifunctional metasurface.
    Li X; Zhou Y; Ge S; Wang G; Li S; Liu Z; Li X; Zhao W; Yao B; Zhang W
    Opt Lett; 2022 Feb; 47(4):977-980. PubMed ID: 35167573
    [TBL] [Abstract][Full Text] [Related]  

  • 72. High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers.
    van der Horst A; van Oostrum PD; Moroz A; van Blaaderen A; Dogterom M
    Appl Opt; 2008 Jun; 47(17):3196-202. PubMed ID: 18545293
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Torsional optical spring effect in coupled nanobeam photonic crystal cavities.
    Tian F; Zhou G; Chau FS; Deng J
    Opt Lett; 2014 Nov; 39(21):6289-92. PubMed ID: 25361336
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Micro particle launcher/cleaner based on optical trapping technology.
    Liu Z; Liang P; Zhang Y; Zhang Y; Zhao E; Yang J; Yuan L
    Opt Express; 2015 Apr; 23(7):8650-8. PubMed ID: 25968703
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Optical Trapping and Manipulating with a Silica Microring Resonator in a Self-Locked Scheme.
    Ho VWL; Chang Y; Liu Y; Zhang C; Li Y; Davidson RR; Little BE; Wang G; Chu ST
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32075346
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Optical 4x4 hitless slicon router for optical networks-on-chip (NoC).
    Sherwood-Droz N; Wang H; Chen L; Lee BG; Biberman A; Bergman K; Lipson M
    Opt Express; 2008 Sep; 16(20):15915-22. PubMed ID: 18825228
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Fiber-integrated optical tweezers for ballistic transport and trapping yeast cells.
    Deng H; Chen D; Wang R; Li F; Luo Z; Deng S; Yin J; Yu L; Zhang W; Yuan L
    Nanoscale; 2022 May; 14(18):6941-6948. PubMed ID: 35466971
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Chiral optical tweezers for optically active particles in the T-matrix formalism.
    Patti F; Saija R; Denti P; Pellegrini G; Biagioni P; Iatì MA; Maragò OM
    Sci Rep; 2019 Jan; 9(1):29. PubMed ID: 30631081
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Focused plasmonic trapping of metallic particles.
    Min C; Shen Z; Shen J; Zhang Y; Fang H; Yuan G; Du L; Zhu S; Lei T; Yuan X
    Nat Commun; 2013; 4():2891. PubMed ID: 24305554
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Spectrally reconfigurable integrated multi-spot particle trap.
    Leake KD; Olson MA; Ozcelik D; Hawkins AR; Schmidt H
    Opt Lett; 2015 Dec; 40(23):5435-8. PubMed ID: 26625019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.