These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23887487)

  • 1. Determining relative contributions of vegetation and topography to burn severity from LANDSAT imagery.
    Wu Z; He HS; Liang Y; Cai L; Lewis BJ
    Environ Manage; 2013 Oct; 52(4):821-36. PubMed ID: 23887487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relative impacts of vegetation, topography and weather on landscape patterns of burn severity in subtropical forests of southern China.
    Guo L; Wu Z; Li S; Xie G
    J Environ Manage; 2024 Feb; 351():119733. PubMed ID: 38061103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of fire severity in fire prone-ecosystems of Spain under two different environmental conditions.
    García-Llamas P; Suárez-Seoane S; Fernández-Manso A; Quintano C; Calvo L
    J Environ Manage; 2020 Oct; 271():110706. PubMed ID: 32778251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vegetation structure parameters determine high burn severity likelihood in different ecosystem types: A case study in a burned Mediterranean landscape.
    Fernández-Guisuraga JM; Suárez-Seoane S; García-Llamas P; Calvo L
    J Environ Manage; 2021 Jun; 288():112462. PubMed ID: 33831636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Still standing: Recent patterns of post-fire conifer refugia in ponderosa pine-dominated forests of the Colorado Front Range.
    Chapman TB; Schoennagel T; Veblen TT; Rodman KC
    PLoS One; 2020; 15(1):e0226926. PubMed ID: 31940320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fire and burn severity assessment: Calibration of Relative Differenced Normalized Burn Ratio (RdNBR) with field data.
    Cardil A; Mola-Yudego B; Blázquez-Casado Á; González-Olabarria JR
    J Environ Manage; 2019 Apr; 235():342-349. PubMed ID: 30703648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Satellite microwave detection of boreal forest recovery from the extreme 2004 wildfires in Alaska and Canada.
    Jones MO; Kimball JS; Jones LA
    Glob Chang Biol; 2013 Oct; 19(10):3111-22. PubMed ID: 23749682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thresholds and alternative states in a Neotropical dry forest in response to fire severity.
    Peinetti HR; Bestelmeyer BT; Chirino CC; Vivalda FL; Kin AG
    Ecol Appl; 2024 Mar; 34(2):e2937. PubMed ID: 38071696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fuel treatments and landform modify landscape patterns of burn severity in an extreme fire event.
    Prichard SJ; Kennedy MC
    Ecol Appl; 2014 Apr; 24(3):571-90. PubMed ID: 24834742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fuel treatment effectiveness in the context of landform, vegetation, and large, wind-driven wildfires.
    Prichard SJ; Povak NA; Kennedy MC; Peterson DW
    Ecol Appl; 2020 Jul; 30(5):e02104. PubMed ID: 32086976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of landscape pattern and vegetation type on the fire regime of a mesic savanna in Mali.
    Laris P; Jo A; Wechsler SP
    J Environ Manage; 2018 Dec; 227():134-145. PubMed ID: 30172932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wildfire refugia in forests: Severe fire weather and drought mute the influence of topography and fuel age.
    Collins L; Bennett AF; Leonard SWJ; Penman TD
    Glob Chang Biol; 2019 Nov; 25(11):3829-3843. PubMed ID: 31215102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogeographic variability in wildfire severity and post-fire vegetation recovery across the European forests via remote sensing-derived spectral metrics.
    Nolè A; Rita A; Spatola MF; Borghetti M
    Sci Total Environ; 2022 Jun; 823():153807. PubMed ID: 35150679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Fire severity of burnt area in Huzhong forest region of Great Xing' an Mountains, Northeast China based on normalized burn ratio analysis].
    Wang XL; Wang WJ; Chang Y; Feng YT; Chen HW; Hu YM; Chi JG
    Ying Yong Sheng Tai Xue Bao; 2013 Apr; 24(4):967-74. PubMed ID: 23898653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region.
    Harvey BJ; Donato DC; Turner MG
    Ecology; 2016 Sep; 97(9):2272-2282. PubMed ID: 27859087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of weather and fuel type on the fuel composition of the area burned by forest fires in Ontario, 1996-2006.
    Podur JJ; Martell DL
    Ecol Appl; 2009 Jul; 19(5):1246-52. PubMed ID: 19688931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal variability of forest fires in eastern Amazonia.
    Alencar A; Asner GP; Knapp D; Zarin D
    Ecol Appl; 2011 Oct; 21(7):2397-412. PubMed ID: 22073631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence of compounded disturbance effects on vegetation recovery following high-severity wildfire and spruce beetle outbreak.
    Carlson AR; Sibold JS; Assal TJ; Negrón JF
    PLoS One; 2017; 12(8):e0181778. PubMed ID: 28777802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Landscape development, forest fires, and wilderness management.
    Wright HE
    Science; 1974 Nov; 186(4163):487-95. PubMed ID: 17790369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multitemporal lidar captures heterogeneity in fuel loads and consumption on the Kaibab Plateau.
    Bright BC; Hudak AT; McCarley TR; Spannuth A; Sánchez-López N; Ottmar RD; Soja AJ
    Fire Ecol; 2022; 18(1):18. PubMed ID: 36017330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.