These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 23887653)

  • 1. Interaction between dipolar lipid headgroups and charged nanoparticles mediated by water dipoles and ions.
    Velikonja A; Santhosh PB; Gongadze E; Kulkarni M; Eleršič K; Perutkova Š; Kralj-Iglič V; Ulrih NP; Iglič A
    Int J Mol Sci; 2013 Jul; 14(8):15312-29. PubMed ID: 23887653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of nanoparticle-membrane electrostatic interactions on membrane fluidity and bending elasticity.
    Santhosh PB; Velikonja A; Perutkova Š; Gongadze E; Kulkarni M; Genova J; Eleršič K; Iglič A; Kralj-Iglič V; Ulrih NP
    Chem Phys Lipids; 2014 Feb; 178():52-62. PubMed ID: 24309194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of divalent calcium ions with head groups of zwitterionic phosphatidylcholine liposomal membranes.
    Santhosh PB; Velikonja A; Gongadze E; Iglič A; Kralj-Iglič V; Ulrih NP
    Acta Chim Slov; 2014; 61(2):215-22. PubMed ID: 25125103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and fluctuations of charged phosphatidylserine bilayers in the absence of salt.
    Petrache HI; Tristram-Nagle S; Gawrisch K; Harries D; Parsegian VA; Nagle JF
    Biophys J; 2004 Mar; 86(3):1574-86. PubMed ID: 14990484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of lipid charge in organization of water/lipid bilayer interface: insights via computer simulations.
    Polyansky AA; Volynsky PE; Nolde DE; Arseniev AS; Efremov RG
    J Phys Chem B; 2005 Aug; 109(31):15052-9. PubMed ID: 16852905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Reconfiguration of Binary Lipid Vesicles via Electrostatically Induced Nanoparticle Adsorption.
    Aydin F; Dutt M
    J Phys Chem B; 2016 Jul; 120(27):6646-56. PubMed ID: 27340906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Atomistic Molecular Dynamics Study of Titanium Dioxide Adhesion to Lipid Bilayers.
    Aranha MP; Mukherjee D; Petridis L; Khomami B
    Langmuir; 2020 Feb; 36(4):1043-1052. PubMed ID: 31944772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polystyrene nanoparticle exposure induces ion-selective pores in lipid bilayers.
    Negoda A; Kim KJ; Crandall ED; Worden RM
    Biochim Biophys Acta; 2013 Sep; 1828(9):2215-22. PubMed ID: 23747366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate effects on interactions of lipid bilayer assemblies with bound nanoparticles.
    Goertz MP; Goyal N; Bunker BC; Montaño GA
    J Colloid Interface Sci; 2011 Jun; 358(2):635-8. PubMed ID: 21477809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of superparamagnetic iron oxide nanoparticles on fluidity and phase transition of phosphatidylcholine liposomal membranes.
    Santhosh PB; Drašler B; Drobne D; Kreft ME; Kralj S; Makovec D; Ulrih NP
    Int J Nanomedicine; 2015; 10():6089-103. PubMed ID: 26491286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between nanoparticles and charged phospholipid membranes.
    Huang B; Tan Z; Bohinc K; Zhang S
    Phys Chem Chem Phys; 2018 Nov; 20(46):29249-29263. PubMed ID: 30427341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of negatively and positively capped gold nanoparticle with different lipid model membranes.
    Sheridan AJ; Thompson KC; Slater JM
    Biophys Chem; 2022 Nov; 290():106896. PubMed ID: 36162346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric double layer electrostatics of lipid-bilayer-encapsulated nanoparticles: Toward a better understanding of protocell electrostatics.
    Jing H; Das S
    Electrophoresis; 2018 Mar; 39(5-6):752-759. PubMed ID: 29235657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling the Origin of the Apparent Charge of Zwitterionic Lipid Layers.
    Dreier LB; Wolde-Kidan A; Bonthuis DJ; Netz RR; Backus EHG; Bonn M
    J Phys Chem Lett; 2019 Oct; 10(20):6355-6359. PubMed ID: 31568720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Debye-Hückel theory of mixed charged-zwitterionic lipid layers.
    Mengistu DH; May S
    Eur Phys J E Soft Matter; 2008 Jul; 26(3):251-60. PubMed ID: 18461275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and phase transformations of DPPC lipid bilayers in the presence of nanoparticles: insights from coarse-grained molecular dynamics simulations.
    Prates Ramalho JP; Gkeka P; Sarkisov L
    Langmuir; 2011 Apr; 27(7):3723-30. PubMed ID: 21391652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of zwitterionic lipids on the electrostatic adsorption of macroions onto mixed lipid membranes.
    Haugen A; May S
    J Chem Phys; 2007 Dec; 127(21):215104. PubMed ID: 18067381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osmotic Stress Induced Desorption of Calcium Ions from Dipolar Lipid Membranes.
    Fink L; Feitelson J; Noff R; Dvir T; Tamburu C; Raviv U
    Langmuir; 2017 Jun; 33(23):5636-5641. PubMed ID: 28514855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical and Electrical Interaction of Biological Membranes with Nanoparticles and Nanostructured Surfaces.
    Raval J; Gongadze E; Benčina M; Junkar I; Rawat N; Mesarec L; Kralj-Iglič V; Góźdź W; Iglič A
    Membranes (Basel); 2021 Jul; 11(7):. PubMed ID: 34357183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monovalent ions and water dipoles in contact with dipolar zwitterionic lipid headgroups-theory and MD simulations.
    Velikonja A; Perutkova S; Gongadze E; Kramar P; Polak A; Maček-Lebar A; Iglič A
    Int J Mol Sci; 2013 Jan; 14(2):2846-61. PubMed ID: 23434651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.