These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 23888140)

  • 1. MACOP modular architecture with control primitives.
    Waegeman T; Hermans M; Schrauwen B
    Front Comput Neurosci; 2013; 7():99. PubMed ID: 23888140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generating Pointing Motions for a Humanoid Robot by Combining Motor Primitives.
    Tieck JCV; Schnell T; Kaiser J; Mauch F; Roennau A; Dillmann R
    Front Neurorobot; 2019; 13():77. PubMed ID: 31619981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generating variability from motor primitives during infant locomotor development.
    Hinnekens E; Barbu-Roth M; Do MC; Berret B; Teulier C
    Elife; 2023 Jul; 12():. PubMed ID: 37523218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems.
    Rückert E; d'Avella A
    Front Comput Neurosci; 2013; 7():138. PubMed ID: 24146647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robot Learning Method for Human-like Arm Skills Based on the Hybrid Primitive Framework.
    Li J; Han H; Hu J; Lin J; Li P
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment.
    Yamashita Y; Tani J
    PLoS Comput Biol; 2008 Nov; 4(11):e1000220. PubMed ID: 18989398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Motor Primitive-Based Adaptive Control for Lower Limb Exoskeletons.
    Nunes PF; Ostan I; Siqueira AAG
    Front Robot AI; 2020; 7():575217. PubMed ID: 33501336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robot Learning System Based on Adaptive Neural Control and Dynamic Movement Primitives.
    Yang C; Chen C; He W; Cui R; Li Z
    IEEE Trans Neural Netw Learn Syst; 2019 Mar; 30(3):777-787. PubMed ID: 30047914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase portraits as movement primitives for fast humanoid robot control.
    Maeda G; Koç O; Morimoto J
    Neural Netw; 2020 Sep; 129():109-122. PubMed ID: 32505964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A primitive-based representation of dance: modulations by experience and perceptual validity.
    Leh A; Endres D; Hegele M
    J Neurophysiol; 2023 Nov; 130(5):1214-1225. PubMed ID: 37820011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor primitives of pointing movements in a three-dimensional workspace.
    Schütz C; Schack T
    Exp Brain Res; 2013 Jun; 227(3):355-65. PubMed ID: 23604576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can modular strategies simplify neural control of multidirectional human locomotion?
    Zelik KE; La Scaleia V; Ivanenko YP; Lacquaniti F
    J Neurophysiol; 2014 Apr; 111(8):1686-702. PubMed ID: 24431402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learned graphical models for probabilistic planning provide a new class of movement primitives.
    Rückert EA; Neumann G; Toussaint M; Maass W
    Front Comput Neurosci; 2012; 6():97. PubMed ID: 23293598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An adaptive spinal-like controller: tunable biomimetic behavior for a robotic limb.
    Stefanovic F; Galiana HL
    Biomed Eng Online; 2014 Nov; 13():151. PubMed ID: 25409735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning of action through adaptive combination of motor primitives.
    Thoroughman KA; Shadmehr R
    Nature; 2000 Oct; 407(6805):742-7. PubMed ID: 11048720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward a unifying framework for the modeling and identification of motor primitives.
    Chiovetto E; Salatiello A; d'Avella A; Giese MA
    Front Comput Neurosci; 2022; 16():926345. PubMed ID: 36172054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reinforcement learning of motor skills with policy gradients.
    Peters J; Schaal S
    Neural Netw; 2008 May; 21(4):682-97. PubMed ID: 18482830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the transparency of a rehabilitation robot by exploiting the cyclic behaviour of walking.
    van Dijk W; van der Kooij H; Koopman B; van Asseldonk EH; van der Kooij H
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650393. PubMed ID: 24187212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A modular neural model of motor synergies.
    Byadarhaly KV; Perdoor MC; Minai AA
    Neural Netw; 2012 Aug; 32():96-108. PubMed ID: 22394689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Configuration-Dependent Optimal Impedance Control of an Upper Extremity Stroke Rehabilitation Manipulandum.
    Ghannadi B; Sharif Razavian R; McPhee J
    Front Robot AI; 2018; 5():124. PubMed ID: 33501003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.