BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23888610)

  • 21. Genotype and antibiotic susceptibility patterns of Pseudomonas aeruginosa and Stenotrophomonas maltophilia isolated from cystic fibrosis patients.
    Nazik H; Ongen B; Erturan Z; Salcioğlu M
    Jpn J Infect Dis; 2007 May; 60(2-3):82-6. PubMed ID: 17515637
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vaccines to Overcome Antibiotic Resistance: The Challenge of Burkholderia cenocepacia.
    Scoffone VC; Barbieri G; Buroni S; Scarselli M; Pizza M; Rappuoli R; Riccardi G
    Trends Microbiol; 2020 Apr; 28(4):315-326. PubMed ID: 31932141
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pseudomonas aeruginosa alginate promotes Burkholderia cenocepacia persistence in cystic fibrosis transmembrane conductance regulator knockout mice.
    Chattoraj SS; Murthy R; Ganesan S; Goldberg JB; Zhao Y; Hershenson MB; Sajjan US
    Infect Immun; 2010 Mar; 78(3):984-93. PubMed ID: 20048042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increasing Incidence of Multidrug Resistance Among Cystic Fibrosis Respiratory Bacterial Isolates.
    Rutter WC; Burgess DR; Burgess DS
    Microb Drug Resist; 2017 Jan; 23(1):51-55. PubMed ID: 27326758
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel method for investigating Burkholderia cenocepacia infections in patients with cystic fibrosis and other chronic diseases of the airways.
    Wijers CD; Vagedes R; Weingart C
    BMC Microbiol; 2016 Sep; 16(1):200. PubMed ID: 27586172
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Mazer DM; Young C; Kalikin LM; Spilker T; LiPuma JJ
    Antimicrob Agents Chemother; 2017 Sep; 61(9):. PubMed ID: 28674053
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Survival dynamics of cystic fibrosis-related Gram-negative bacterial pathogens (Pseudomonas aeruginosa and Burkholderia cenocepacia) in Dead Sea and Atlantic Ocean waters.
    Shteinberg M; Kis-Papo T; Millar BC; Rendall JC; Downey DG; Elborn JS; Moore JE
    J Water Health; 2015 Sep; 13(3):773-6. PubMed ID: 26322762
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Which pathogens should we worry about?
    Jones AM
    Paediatr Respir Rev; 2019 Aug; 31():15-17. PubMed ID: 30967346
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence.
    Drevinek P; Mahenthiralingam E
    Clin Microbiol Infect; 2010 Jul; 16(7):821-30. PubMed ID: 20880411
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of sinus surgery with intensive follow-up on pathogenic sinus bacteria in patients with cystic fibrosis.
    Aanaes K; von Buchwald C; Hjuler T; Skov M; Alanin M; Johansen HK
    Am J Rhinol Allergy; 2013 Jan; 27(1):e1-4. PubMed ID: 23406585
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Segregation is good for patients with cystic fibrosis.
    Conway S
    J R Soc Med; 2008 Jul; 101 Suppl 1(Suppl 1):S31-5. PubMed ID: 18607016
    [No Abstract]   [Full Text] [Related]  

  • 32. In vitro activity of minocycline against respiratory pathogens from patients with cystic fibrosis.
    Kurlandsky LE; Fader RC
    Pediatr Pulmonol; 2000 Mar; 29(3):210-2. PubMed ID: 10686042
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of the multifaceted iron acquisition strategies of Burkholderia cenocepacia.
    Tyrrell J; Whelan N; Wright C; Sá-Correia I; McClean S; Thomas M; Callaghan M
    Biometals; 2015 Apr; 28(2):367-80. PubMed ID: 25725797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Susceptibility of Burkholderia cepacia and other pathogens of importance in cystic fibrosis to u.v. light.
    Cairns G; Kerr KG; Beggs CB; Sleigh PA; Mooney L; Keig P; Donnelly JK
    Lett Appl Microbiol; 2001 Mar; 32(3):135-8. PubMed ID: 11264740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbiological and epidemiological features of clinical respiratory isolates of Burkholderia gladioli.
    Segonds C; Clavel-Batut P; Thouverez M; Grenet D; Le Coustumier A; Plésiat P; Chabanon G
    J Clin Microbiol; 2009 May; 47(5):1510-6. PubMed ID: 19297595
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Ultraviolet-c (UVc) light and ozone on the survival of
    Moore JE; Millar BC
    Int J Mycobacteriol; 2022; 11(3):256-260. PubMed ID: 36260443
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Discovery of inhibition of
    McIlroy R; Nelson DW; Millar BC; Murphy A; Rao JR; Downey DG; Moore JE
    Ulster Med J; 2021 Sep; 90(3):168-174. PubMed ID: 34815596
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pseudomonas aeruginosa Promotes Persistence of Stenotrophomonas maltophilia via Increased Adherence to Depolarized Respiratory Epithelium.
    McDaniel MS; Lindgren NR; Billiot CE; Valladares KN; Sumpter NA; Swords WE
    Microbiol Spectr; 2023 Feb; 11(1):e0384622. PubMed ID: 36472421
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synergistic activities of macrolide antibiotics against Pseudomonas aeruginosa, Burkholderia cepacia, Stenotrophomonas maltophilia, and Alcaligenes xylosoxidans isolated from patients with cystic fibrosis.
    Saiman L; Chen Y; Gabriel PS; Knirsch C
    Antimicrob Agents Chemother; 2002 Apr; 46(4):1105-7. PubMed ID: 11897598
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbiology of airway disease in a cohort of patients with cystic fibrosis.
    Lambiase A; Raia V; Del Pezzo M; Sepe A; Carnovale V; Rossano F
    BMC Infect Dis; 2006 Jan; 6():4. PubMed ID: 16405721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.