These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23888961)

  • 1. Human imprinting anomalies in fetal and childhood growth disorders: clinical implications and molecular mechanisms.
    Azzi S; Brioude F; Le Bouc Y; Netchine I
    Curr Pharm Des; 2014; 20(11):1751-63. PubMed ID: 23888961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic anomalies in childhood growth disorders.
    Netchine I; Rossignol S; Azzi S; Le Bouc Y
    Nestle Nutr Inst Workshop Ser; 2013; 71():65-73. PubMed ID: 23502140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lessons from imprinted multilocus loss of methylation in human syndromes: A step toward understanding the mechanisms underlying these complex diseases.
    Azzi S; Rossignol S; Le Bouc Y; Netchine I
    Epigenetics; 2010 Jul; 5(5):373-7. PubMed ID: 20495355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of global loss of imprinting in fetal overgrowth syndrome induced by assisted reproduction.
    Chen Z; Hagen DE; Elsik CG; Ji T; Morris CJ; Moon LE; Rivera RM
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4618-23. PubMed ID: 25825726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uniparental disomy: clinical indications for testing in growth retardation.
    Eggermann T; Zerres K; Eggermann K; Moore G; Wollmann HA
    Eur J Pediatr; 2002 Jun; 161(6):305-12. PubMed ID: 12029448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imprinted disorders and growth.
    Giabicani É; Brioude F; Le Bouc Y; Netchine I
    Ann Endocrinol (Paris); 2017 Jun; 78(2):112-113. PubMed ID: 28478949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetics in Silver-Russell syndrome.
    Rossignol S; Netchine I; Le Bouc Y; Gicquel C
    Best Pract Res Clin Endocrinol Metab; 2008 Jun; 22(3):403-14. PubMed ID: 18538282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA methylation errors in imprinting disorders and assisted reproductive technology.
    Chiba H; Hiura H; Okae H; Miyauchi N; Sato F; Sato A; Arima T
    Pediatr Int; 2013 Oct; 55(5):542-9. PubMed ID: 23919517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epigenetic and genetic alterations of the imprinting disorder Beckwith-Wiedemann syndrome and related disorders.
    Soejima H; Higashimoto K
    J Hum Genet; 2013 Jul; 58(7):402-9. PubMed ID: 23719190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular subtypes and phenotypic expression of Beckwith-Wiedemann syndrome.
    Cooper WN; Luharia A; Evans GA; Raza H; Haire AC; Grundy R; Bowdin SC; Riccio A; Sebastio G; Bliek J; Schofield PN; Reik W; Macdonald F; Maher ER
    Eur J Hum Genet; 2005 Sep; 13(9):1025-32. PubMed ID: 15999116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genomic imprinting syndromes and cancer.
    Lim DH; Maher ER
    Adv Genet; 2010; 70():145-75. PubMed ID: 20920748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic imprinting in the human placenta.
    Monk D
    Am J Obstet Gynecol; 2015 Oct; 213(4 Suppl):S152-62. PubMed ID: 26428495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetics, genomic imprinting and assisted reproductive technology.
    Le Bouc Y; Rossignol S; Azzi S; Steunou V; Netchine I; Gicquel C
    Ann Endocrinol (Paris); 2010 May; 71(3):237-8. PubMed ID: 20362968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenotype-phenotype correlations in Beckwith-Wiedemann syndrome.
    Engel JR; Smallwood A; Harper A; Higgins MJ; Oshimura M; Reik W; Schofield PN; Maher ER
    J Med Genet; 2000 Dec; 37(12):921-6. PubMed ID: 11106355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multilocus methylation analysis in a large cohort of 11p15-related foetal growth disorders (Russell Silver and Beckwith Wiedemann syndromes) reveals simultaneous loss of methylation at paternal and maternal imprinted loci.
    Azzi S; Rossignol S; Steunou V; Sas T; Thibaud N; Danton F; Le Jule M; Heinrichs C; Cabrol S; Gicquel C; Le Bouc Y; Netchine I
    Hum Mol Genet; 2009 Dec; 18(24):4724-33. PubMed ID: 19755383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic modulation of the IGF2/H19 imprinted domain in human embryonic and extra-embryonic compartments and its possible role in fetal growth restriction.
    Tabano S; Colapietro P; Cetin I; Grati FR; Zanutto S; Mandò C; Antonazzo P; Pileri P; Rossella F; Larizza L; Sirchia SM; Miozzo M
    Epigenetics; 2010 May; 5(4):313-24. PubMed ID: 20418667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Epigenetics, genomic imprinting and developmental disorders].
    Le Bouc Y; Rossignol S; Azzi S; Brioude F; Cabrol S; Gicquel C; Netchine I
    Bull Acad Natl Med; 2010 Feb; 194(2):287-97; discussion 297-300. PubMed ID: 21166119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. (Epi)mutations in 11p15 significantly contribute to Silver-Russell syndrome: but are they generally involved in growth retardation?
    Schönherr N; Meyer E; Eggermann K; Ranke MB; Wollmann HA; Eggermann T
    Eur J Med Genet; 2006; 49(5):414-8. PubMed ID: 16603426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review and hypothesis: syndromes with severe intrauterine growth restriction and very short stature--are they related to the epigenetic mechanism(s) of fetal survival involved in the developmental origins of adult health and disease?
    Hall JG
    Am J Med Genet A; 2010 Feb; 152A(2):512-27. PubMed ID: 20101705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imprinted anomalies in fetal and childhood growth disorders: the model of Russell-Silver and Beckwith-Wiedemann syndromes.
    Netchine I; Rossignol S; Azzi S; Brioude F; Le Bouc Y
    Endocr Dev; 2012; 23():60-70. PubMed ID: 23182821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.