BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 23889038)

  • 1. Visualization of plant cell wall lignification using fluorescence-tagged monolignols.
    Tobimatsu Y; Wagner A; Donaldson L; Mitra P; Niculaes C; Dima O; Kim JI; Anderson N; Loque D; Boerjan W; Chapple C; Ralph J
    Plant J; 2013 Nov; 76(3):357-66. PubMed ID: 23889038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A click chemistry strategy for visualization of plant cell wall lignification.
    Tobimatsu Y; Van de Wouwer D; Allen E; Kumpf R; Vanholme B; Boerjan W; Ralph J
    Chem Commun (Camb); 2014 Oct; 50(82):12262-5. PubMed ID: 25180250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. UDP-glycosyltransferase 72B1 catalyzes the glucose conjugation of monolignols and is essential for the normal cell wall lignification in Arabidopsis thaliana.
    Lin JS; Huang XX; Li Q; Cao Y; Bao Y; Meng XF; Li YJ; Fu C; Hou BK
    Plant J; 2016 Oct; 88(1):26-42. PubMed ID: 27273756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A versatile click-compatible monolignol probe to study lignin deposition in plant cell walls.
    Pandey JL; Wang B; Diehl BG; Richard TL; Chen G; Anderson CT
    PLoS One; 2015; 10(4):e0121334. PubMed ID: 25884205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laccases direct lignification in the discrete secondary cell wall domains of protoxylem.
    Schuetz M; Benske A; Smith RA; Watanabe Y; Tobimatsu Y; Ralph J; Demura T; Ellis B; Samuels AL
    Plant Physiol; 2014 Oct; 166(2):798-807. PubMed ID: 25157028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity.
    Anterola AM; Lewis NG
    Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neighboring parenchyma cells contribute to Arabidopsis xylem lignification, while lignification of interfascicular fibers is cell autonomous.
    Smith RA; Schuetz M; Roach M; Mansfield SD; Ellis B; Samuels L
    Plant Cell; 2013 Oct; 25(10):3988-99. PubMed ID: 24096341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The transport of monomers during lignification in plants: anything goes but how?
    Perkins M; Smith RA; Samuels L
    Curr Opin Biotechnol; 2019 Apr; 56():69-74. PubMed ID: 30347315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Monolignol p-Coumarate Conjugates into Poplar and Arabidopsis Lignins.
    Smith RA; Gonzales-Vigil E; Karlen SD; Park JY; Lu F; Wilkerson CG; Samuels L; Ralph J; Mansfield SD
    Plant Physiol; 2015 Dec; 169(4):2992-3001. PubMed ID: 26511914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cell biology of lignification in higher plants.
    Barros J; Serk H; Granlund I; Pesquet E
    Ann Bot; 2015 Jun; 115(7):1053-74. PubMed ID: 25878140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monolignol export by diffusion down a polymerization-induced concentration gradient.
    Perkins ML; Schuetz M; Unda F; Chen KT; Bally MB; Kulkarni JA; Yan Y; Pico J; Castellarin SD; Mansfield SD; Samuels AL
    Plant Cell; 2022 Apr; 34(5):2080-2095. PubMed ID: 35167693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular machinery of wood production: differentiation of secondary xylem in Pinus contorta var. latifolia.
    Samuels AL; Rensing KH; Douglas CJ; Mansfield SD; Dharmawardhana DP; Ellis BE
    Planta; 2002 Nov; 216(1):72-82. PubMed ID: 12430016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemistry and molecular biology of lignification.
    Boudet AM; Lapierre C; Grima-Pettenati J
    New Phytol; 1995 Feb; 129(2):203-236. PubMed ID: 33874561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BLISS: Shining a light on lignification in plants.
    Simon C; Lion C; Huss B; Blervacq AS; Spriet C; Guérardel Y; Biot C; Hawkins S
    Plant Signal Behav; 2017 Aug; 12(8):e1359366. PubMed ID: 28786751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability.
    Grabber JH; Schatz PF; Kim H; Lu F; Ralph J
    BMC Plant Biol; 2010 Jun; 10():114. PubMed ID: 20565789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An engineered monolignol 4-o-methyltransferase depresses lignin biosynthesis and confers novel metabolic capability in Arabidopsis.
    Zhang K; Bhuiya MW; Pazo JR; Miao Y; Kim H; Ralph J; Liu CJ
    Plant Cell; 2012 Jul; 24(7):3135-52. PubMed ID: 22851762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lignification: different mechanisms for a versatile polymer.
    Voxeur A; Wang Y; Sibout R
    Curr Opin Plant Biol; 2015 Feb; 23():83-90. PubMed ID: 25449731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating Biochemical and Developmental Dependencies of Lignification with a Click-Compatible Monolignol Analog in Arabidopsis thaliana Stems.
    Pandey JL; Kiemle SN; Richard TL; Zhu Y; Cosgrove DJ; Anderson CT
    Front Plant Sci; 2016; 7():1309. PubMed ID: 27630649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution, mobility, and anchoring of lignin-related oxidative enzymes in Arabidopsis secondary cell walls.
    Yi Chou E; Schuetz M; Hoffmann N; Watanabe Y; Sibout R; Samuels AL
    J Exp Bot; 2018 Apr; 69(8):1849-1859. PubMed ID: 29481639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining the Diverse Cell Populations Contributing to Lignification in Arabidopsis Stems.
    Smith RA; Schuetz M; Karlen SD; Bird D; Tokunaga N; Sato Y; Mansfield SD; Ralph J; Samuels AL
    Plant Physiol; 2017 Jun; 174(2):1028-1036. PubMed ID: 28416705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.